

Open Access

Squamanitaceae and three new species of Squamanita parasitic on Amanita basidiomes

Jian-Wei Liu^{1,2}, Zai-Wei Ge^{1,3}, Egon Horak⁴, Alfredo Vizzini⁵, Roy E. Halling⁶, Chun-Lei Pan⁷ and Zhu L. Yang^{1,3*}®

Abstract

The systematic position of the enigmatically mycoparasitic genus Squamanita (Agaricales, Basidiomycota) together with Cystoderma, Phaeolepiota, Floccularia, and Leucopholiota is largely unknown. Recently they were recognized as Squamanitaceae, but previous studies used few DNA markers from a restricted sample of taxa from the family and lacked a formal taxonomic treatment. In this study, with newly generated sequences of the type of the genus Squamanita, S. schreieri, and several additional species of the family, the phylogeny is reinvestigated with a concatenated (18S-5.8S-nrLSU-RPB2-TEF1-α) dataset. This study reveals that *Cystoderma*, *Phaeolepiota*, *Squamanita*, Floccularia, and Leucopholiota are a monophyletic clade with strong statistical support in Bayesian analysis and form Squamanitaceae. Phaeolepiota nested within Cystoderma; Squamanita, Leucopholiota, and Floccularia clustered together as two monophyletic subclades; and Squamanita was present as a monophyletic clade with strong statistical support in both Maximum Likelihood and Bayesian analyses. The family name Squamanitaceae is formally emended and a detailed taxonomic treatment is presented to accommodate the five genera. Meanwhile, another concatenated (18S-ITS-nrLSU-RPB2-TEF1- α) dataset is used to investigate phylogenetic relationships and species delimitation in Squamanita. Our data indicates that "S. umbonata" from the Northern hemisphere forms two species complexes, one complex includes six specimens from North America, Europe, and East Asia, the other includes two specimens from Central America and North America respectively. Futhermore, species of Squamanita can parasitize species of Amanita, besides other fungal species. Squamanita mira parasitizes A. kitamagotake (A. sect. Caesareae), while S. orientalis and S. sororcula are parasites of species belonging to the A. sepiacea complex (A. sect. Validae). "Squamanita umbonata" from Italy occurs on A. excelsa (A. sect. Validae). Three new species of Squamanita from East Asia, viz. S. mira, S. orientalis and S. sororcula are documented with morphological, multi-gene phylogenetic, and ecological data, along with line drawings and photographs, and compared with similar species. A key for identification of the global Squamanita species is provided.

Keywords: Amanita, Mycoparasitic fungi, Squamanita, Host preference, Three new taxa

¹Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China

³CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China

Full list of author information is available at the end of the article

© The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

^{*} Correspondence: fungi@mail.kib.ac.cn

INTRODUCTION

Squamanita is one of the most enigmatic genera of the Agaricales (Halama 2016; Mondiet et al. 2007; Redhead et al. 1994), and the members of this genus are extremely rare and sporadic all over the world (Griffith et al. 2019; Holden 2005; Matheny and Griffith 2010). Squamanita was originally described from riverine forest in Switzerland. After examining the type material, Horak (1968) presented a full re-description of the microscopic characters including features not reported in the protologue. Almost all the species of Squamanita are biotrophic parasites on other agaric species (Halama 2016; Harmaja 1987; Henrici 2013; Matheny and Griffith 2010; Nagasawa et al. 1990; Redhead et al. 1994; Reid 1983). The basidiomes of Squamanita grow from other agaric species and deform the host basidiomes so that they become incorporated into an enlarged base of the stipe of the Squamanita. Eventually, the host is completely deformed and more or less unrecognizable (Halama 2016; Redhead et al. 1994). Parasitized host tissue has been labelled as "sclerotial bodies", "protocarpic tubers" (Bas 1965; Singer 1986), "galls" (Redhead et al. 1994), "cecidiocarp" (Bas and Thoen 1998) or "mycocecidium" (Griffith et al. 2019; Vizzini and Girlanda 1997), and sometimes multiple basidiomes come out from a "mycocecidium" (Bas 1965; Mondiet et al. 2007).

To date, 12 species of *Squamanita* have been accepted in the current literature (*http://www.indexfungorum.org/ Names/names.asp*; Fraiture et al. 2019). It is reported that these species can parasite at least seven different genera of Agaricales, viz. *Amanita* (Bas 1965; Redhead et al. 1994), *Cystoderma* (Griffith et al. 2019; Harmaja 1987; Holden 2005; Matheny and Griffith 2010; Redhead et al. 1994; Reid 1983; Singer 1986), *Galerina* (Redhead et al. 1994), *Hebeloma* (Bas and Læssøe 1999; Mondiet et al. 2007; Vesterholt 1991), *Inocybe* (Vizzini and Girlanda 1997), *Kuehneromyces* (Cervini 2008; Gulden et al. 1977), *Phaeolepiota* (Nagasawa et al. 1990; Redhead et al. 1994), and possibly also *Mycena* (Stridvall 1994).

The genus *Squamanita* was assigned on the basis of morphology to different families in the past, including *Squamanitaceae* and *Cystodermataceae*. Based on phylogenetic analysis of combined nuclear ribosomal RNA genes, Matheny and Griffith (2010) suggested that *Squamanita*, *Cystoderma*, and *Phaeolepiota* represent a monophyletic clade. In the subsequent molecular works by Matheny et al. (2015), Griffith et al. (2019) and Vizzini et al. (2019), *Squamanita* and allied genera were referred as *Squamanitaceae*. Recently, *Squamanita*, *Cystoderma*, *Phaeolepiota*, *Floccularia*, and *Leucopholiota* were classified into *Squamanitaceae* (http://www.agaric.us) (Kalichman et al. 2020), but without a formal taxonomical treatment. In addition, the host species of *Squamanita* have been identified mainly based on morphological data and ecological evidence (Bas 1965; Mondiet et al. 2007), except for a few studies (Griffith et al. 2019; Matheny and Griffith 2010; Mondiet et al. 2007), which used molecular phylogenetic techniques to identify the hosts.

In the survey of macrofungi in China, we collected three species of *Squamanita* and two collections of *Amanita* sect. *Caesareae* and one collection of *A*. sect. *Validae* (Cui et al. 2018) with similar "mycocecidia" of two *Squamanita* species in the nearby localities respectively. To validate the taxonomical, phylogenetic and ecological traits, detailed morphological and anatomical studies and molecular phylogenetic analyses are carried out. To understand the species recorded in China, additional specimens collected in other parts of the world are examined and included in the present report.

MATERIAL AND METHODS

Morphology, sampling, DNA extraction, PCR amplification and sequencing

Specimens studied are listed in Tables 1 and 2. For morphological study, we follow Cui et al. (2018) and the references therein. To verify the mycoparasitic features of the target species, routine samples (HKAS100826) for DNA extraction were separately taken both from the basidiome (five samples for basidiome labeled from C1 to C5) and the mycocecidium (six samples labeled from B1 to B6 as illustrated in Fig. 6). In addition, samples of other specimens were taken from different locations from their basidiomes and mycocecidia respectively, and then mixed for improving the success probability of DNA extraction in case of poor sample quality. Particularly, the volval remnant-like structure on the cap of the Squamanita specimen (HKAS74862A) was sampled. All Chinese collections are deposited in the Herbarium of Cryptogams of Kunming Institute of Botany, Chinese Academy of Sciences, China (HKAS).

The total genomic DNA of all the materials of the parasitic species and the coexisting *Amanita* species was extracted by using the Extract-N-Amp kit (Sigma, USA). Universal primer pairs LROR/LR5 (Vilgalys and Hester 1990), ITS1F/ITS4 (Gardes and Bruns 1993; White et al. 1990), PNS1/NS41 (Bruns lab; Hibbett 1996) and NS51/NS8 (Bruns lab; White et al. 1990), and EF1-983F/EF1-1567R (Rehner and Buckley 2005), RPB2-6F/RPB2-7R (Hall lab), RPB1-Af/RPB1-Dr (Hall lab) were used for amplifying the large nuclear ribosomal RNA subunit (nrLSU), the internal transcribed spacers 1 and 2 with the 5.8S rDNA (ITS), the small subunit (18S) region, translation elongation factor 1- α (TEF1- α), the RNA polymerase II second largest subunit (RPB1) respectively.

PCR products which failed in direct sequencing were firstly purified with the Cycle-pure-kit (Omega, USA) or Gel Extraction and PCR Purification Combo Kit

Table 1 Specimens used to in	fer the phylogeny of Squame	<i>initaceae</i> in this study are liste	ed with their H	Herbarium ID	and accessic	in numbers.	Newly generated	sequences are
highlighted in boldface								
Taxon	Specimen	Locality	ITS	LSU	TEF1-α	RPB2	RPB1 185	

Taxon	Specimen	Locality	ITS	LSU	TEF1-α	RPB2	RPB1	18S
								PNS1/NS41 & NS51/NS8
Agaricus bisporus	H97	1	genome	genome	genome	genome	I	genome
Agaricus campestris	LAPAG370	Spain	KM657927	KP739803	KR006636	KT951556	I	I
Agrocybe praecox	AFTOL-ID 728	1	AY818348	AY646101	DQ061276	DQ385876	I	AY705956
Alnicola luteolofibrillosa	TU110320	Estonia	JN943976	JN938776	I	I	I	JN939103
Amanita brunnescens	AFTOL-ID 673	I	AY789079	AY631902	AY881021	AY780936	I	AY707096
Auritella foveata	TENN: 063905	India	NR_119762	GU062739	MK426177	GU062738	I	MK429932
Bolbitius vitellinus	AFTOL-ID 730	I	DQ200920	AY691807	DQ408148	I	I	AY705955
Cercopemyces crocodilinus	UTC258260	USA	JX409899	JX409897	I	I	I	I
Chlorophyllum agaricoides	AFTOL-ID 440	1	DQ200928	AY700187	DQ457631	I	I	AY657010
Chlorophyllum molybdites	Z.W.Ge 3381	USA	MG741993	MG742034	MG742091	MG742063	I	I
Chromocyphella muscicola	ARAN-Fungi 3210	Spain	MF623836	MF623835	MF948156	MF623838	I	I
Conocybe lactea	AFTOL-ID 1675	I	DQ486693	DQ457660	I	I	I	DQ437683
Conocybe tenera	NL-1615	I	JX968180	JX968296	JX968404	I	I	I
Coprinellus micaceus	FP101781	I	genome	genome	genome	genome	I	genome
Coprinus comatus	AFTOL-ID 626	I	AY854066	AY635772	AY881026	AY780934	I	AY665772
Cortinarius sodagnitus	AFTOL-ID 811	I	DQ083812	AY684151	DQ061275	DQ083920	I	AY752975
Cortinarius violaceus	AFTOL-ID 814	I	DQ486695	DQ457662	I	DQ470835	I	AY705950
Crepidotus cf. applanatus	AFTOL-ID 817	I	DQ202273	AY380406	DQ028581	AY333311	I	AY705951
Crucibulum laeve	AFTOL-ID 1334	I	DQ486696	AF336246	I	DQ470836	I	AF026624
Cyathus striatus	AFTOL-ID 1333	1	DQ486697	AF336247	GU187694	DQ472711	I	AF026617
Cystoagaricus strobilomyces	E. Nagasawa 9740 (TMI)	Japan	AY176347	AY176348	I	I	I	I
Cystoderma amianthinum	HKAS106238	China	MW258857	MW258909	I	MW289802	MW289812	MW258936 & MW258887
Cystoderma amianthinum	HKAS105568	China	MW258858	MW258910	I	I	MW289813	MW258937 & MW258888
Cystoderma amianthinum	HKAS57757	China	MW258859	MW258911	MW324503	MW289803	MW289814	MW258938 & MW258889
Cystoderma amianthinum	HKAS107328	China	MW258860	MW258912	MW324504	MW289805	MW289815	MW258939 & MW258890
Cystoderma amianthinum	HKAS107326	China	MW258861	MW258913	Ι	MW289804	MW289816	MW258940 & MW258891
Cystoderma amianthinum	HKAS107327	China	MW258862	MW258914	MW324496	MW289806	MW289817	MW258941 & MW258892
Cystoderma amianthinum	TENN: 063549	UK	GU296098	EF535265	I	I	I	GU 296097
Cystoderma amianthinum	AFTOL-ID 1553	I	DQ192177	DQ154108	Ι	I	Ι	DQ440632
Cystoderma sp.	HKAS107329	China	MW258863	MW258915	MW324497	I	MW289818	MW258942 & MW258893
Cystoderma superbum	BR22288-75	Belgium	AM946504	AM946442	I	I	I	I

	/							
Taxon	Specimen	Locality	ITS	LSU	TEF1-a	RPB2	RPB1	185 PNS1/NS41 & NS51/NS8
Cystoderma superbum	REG (Oct 1976)	Germany	AM946503	AM946443	I	I	I	1
Cystodermella cinnabarina	TAA147423	Estonia	AM946512	AM946429	I	I	I	I
Cystodermella granulosa	TAA147491	Estonia	AM946518	AM946431	I	I	I	I
Descolea tenuipes	TENN:063871	Australia	HQ832453	HQ832466	I	HQ832443	I	HQ832432
Descomyces sp. PDD 105133	PDD 105133	New Zealand	KP191860	KP191723	MH594070	I	Ι	I
Echinoderma asperum	HKAS 106783	North Macedonia	MN810133	MN810088	MN820902	MN820967	I	I
Flammula alnicola	AFTOL-ID 1501	I	DQ486703	DQ457666	GU187699	DQ472714	I	DQ113916
Flammulaster sp. PBM 1871	PBM 1871	1	I	AY380408	I	AY333315	Ι	I
Flammulaster sp. PBM4140	PBM4140	USA	MG773817	MT237465	I	I	I	I
Floccularia luteovirens	Υ1	China	genome	genome	genome	genome	I	genome
Floccularia luteovirens	FLZJUC10	China	genome	genome	genome	genome	I	genome
Floccularia albolanaripes	HKAS107739	China	MW258875	MW258923	MW324498	MW289809	I	MW258944 & MW258896
Floccularia albolanaripes	HKAS107740	China	MW258876	MW258924	MW324499	MW289810	Ι	MW258945 & MW258897
Floccularia albolanaripes	HKAS107741	China	MW258877	MW258925	MW324500	MW289811	I	MW258946 & MW258898
Galerina marginata	AFTOL-ID 465	I	DQ192182	DQ457669	I	I	I	DQ440635
Galerina semilanceata	AFTOL-ID 1497	Ι	DQ486706	AY038309	I	AY337357	I	DQ440639
Hebeloma mesophaeum	KRAM:F57431	Romania	KT071038	I	KT071100	KT071077	I	I
Hebeloma velutipes	AFTOL-ID 980	I	AY818351	AY745703	GU187707	DQ472718	Ι	AY752972
Heinemannomyces splendidissimus	E.C. Vellinga ecv3586 (UC)	Thailand	HM488760	HM488769	I	HM488793	I	I
Hypholoma fasciculare	AFTOL-ID 597	I	AY818349	AY380409	I	AY337413	I	AY787215
Inocybe myriadophylla	AFTOL-ID 482	Ι	DQ221106	AY700196	DQ435791	AY803751	I	AY657016
Inocybe rimosoides	AFTOL-ID 520	I	DQ404391	AY702014	DQ435790	DQ385884	I	AY752967
Inosperma calamistrata	PBM1105	USA	JQ801386	JQ815409	MK426203	JQ846466	I	MK429958
Kuehneromyces rostratus	AFTOL-ID 1676	I	DQ490638	DQ457684	GU187712	DQ472730	I	DQ457624
Laccaria laccata	GMM7605	I	JX504146	KU685901	KU686154	KU686048	I	I
Laccaria ochropurpurea	AFTOL-ID 477	I	I	AY700200	I	DQ472731	I	AY654886
Lacrymaria velutina	AFTOL-ID 478	I	DQ490639	AY700198	I	DQ472733	I	AY654885
Lepiota clypeolaria	HKAS87248	China	MN810123	MN810080	MN820932	MN820941	I	I
Leucoagaricus rubrotinctus	HKAS54317	China	JN944082	JN940294	Ι	JN993685	I	JN940434
Leucocoprinus cepistipes	xml2014128	China	LT716023	KY418838	KY419045	KY418990	Ι	I
Leucocoprinus fragilissimus	ZRL20151466	China	LT716029	KY418844	KY419049	KY418994	Ι	KY418913

highlighted in boldface (Con	(man)							
Taxon	Specimen	Locality	ITS	LSU	TEF1-α	RPB2	RPB1	185 PNS1/NS41 & NS51/NS8
Leucopholiota aff. decorosa	AJ790	USA	1	MK278297	I	I	1	1
Leucopholiota decorosa	TENN:068830	USA	KY777364	MF797662	I	I	I	I
Lycoperdon ericaeum	ZRL20151498	China	LT716030	KY418845	I	KY418995	I	KY418914
Lycoperdon perlatum	KA13-0555	China	KP340193	I	KU764403	KU 764393	I	I
Lycoperdon pyriforme	AFTOL-ID 480	I	AY854075	I	AY883426	AY218495	I	I
Macrolepiota dolichaula	AFTOL-ID 481	China	DQ221111		DQ435785	DQ385886	I	AY771602
Macrolepiota procera	HKA58108	China	I	JN940277	I	7695697	I	JN940449
Mallocybe terrigena	JV 16431 (WTU)	I	I	AY380401	I	AY333309	I	I
Micropsalliota globocystis	ZRL2013465	I	LT716024	KY418839	KY419046	KY418991	I	I
Mycocalia denudata	AFTOL-ID 2018	Canada	DQ911596	DQ911597	Ι	I	I	DQ911598
Mythicomyces comeipes	AFTOL-ID 972	I	DQ404393	AY745707	DQ029197	DQ408110	I	DQ092917
Nematoloma longisporum	AFTOL-ID 1893	I	DQ490634	DQ457681	I	I	I	DQ444863
Nidula niveotomentosa	AFTOL-ID 1945	Canada	DQ917654	DQ986295	I	I	I	GU 296099
Nidula sp.	ZRL20151405	China	LT716028	KY418843	I	I	I	KY418912
Nidularia farcta	AFTOL-ID 1933	Sweden	GU296100	EF535276	I	I	I	I
Nidularia farcta	ZRL2015047	I	LT716025	KY418840	KY419047	I	I	KY418909
Nothocybe distincta	ZT 9250	India	KX171343	EU604546	MK426212	EU600904	I	MK429965
Parasola conopila	ZRL20151990	China	LT716064	KY418880	I	KY419025	I	KY418946
Parasola conopilea	TUB 011587	I	I	DQ071706	I	I	I	I
Parasola plicatilis	SZMC-NL-0295	I	FM163216	FM160693	FM897242	I	I	I
Phaeocollybia festiva	AFTOL-ID 1489	I	DQ494682	AY509119	I	AY509118	I	DQ462516
Phaeolepiota aurea	HKAS93945	China	MW258864	MW258916	MW324501	MW289807	I	MW258943 & MW258894
Phaeolepiota aurea	HKAS107738	China	MW258865	MW258917	MW324502	MW289808	I	- & MW258895
Phaeomarasmius proximans	AFTOL-ID 979	I	DQ404381	AY380410	DQ028592	AY333314	I	AY752970
Phaeonematoloma myosotis	SJ97002	Sweden	AF195599	AY586697	I	I	I	I
Pholiota lenta	PBM4233	USA	MN209743	MN251131	I	MN329707	I	I
Pholiota squarrosa	AFTOL-ID 1627	I	DQ494683	DQ470818	I	I	I	DQ465337
Pholiotina filaris	AFTOL-ID 1498	I	DQ494684	DQ470819	I	I	I	DQ465338
Psathyloma leucocarpum	PBM3116	New Zealand	HQ840659	HQ840660	I	HQ840662	I	HQ840661
Psathyrella candolleana	ZRL20151400	China	LT716063	KY418879	KY419075	KY419024	I	KY418945
Psathyrella panaeoloides	SZMC-NL-2537	I	FM878022	FM876279	I	I	I	I

Liu et al. IMA Fungus

highlighted in boldface (Continu	uea)							
Taxon	Specimen	Locality	ITS	LSU	TEF1-α	RPB2	RPB1	18S PNS1/NS41 & NS51/NS8
Psathyrella spadicea	AFTOL-ID 1628	I	DQ494690	DQ470822	I	1	I	DQ465340
Psathyrella spadicea	SZMC-NL-3996	I	FN396132	FN396180	FN396231	I	I	I
Pseudolepiota zangmui	Z.W.Ge 2175	I	KY768928	MG742049	MG742106	KY768929	I	I
Pseudosperma rimosum	PBM3901	USA	JQ408772	MH220278	MK426218	MH249810	I	MK429971
Psilocybe montana	AFTOL-ID 820	I	DQ494692	DQ470823	I	I	I	DQ465342
Psilocybe subaeruginosa	PBM3218	Australia	I	KF830079	I	KF830062	I	KF830071
Ripartitella brasiliensis	A.E. Franco-Molano 499 (NY)	Colombia	AM946524	AM946465	I	I	I	I
Simocybe serrulata	AFTOL-ID 970	I	DQ494696	AY745706	GU187755	DQ484053	I	DQ465343
Squamanita fimbriata	LUG 12901	Switzerland	MF444998	I	I	I	I	I
Squamanita mira	HKAS107309A	Jiangxi, China	MW258848	MW258900	MW324490	MW289797	I	MW258927 & MW258879
Squamanita mira	HKAS107737A	Yunnan, China	MW258849	MW258901	MW324491	MW289798	I	MW258928 & MW258880
Squamanita mira (holotype)	HKAS100826A	Yunnan, China	MW258847	MW258899	MW324489	MW289796	I	MW258926 & MW258878
Squamanita odorata	O-F-310485	Norway	MG711653	I	I	I	I	I
Squamanita odorata	O-F-146743	Norway	MG711655	I	I	I	I	1
Squamanita odorata	WRSL EF-2009-0001	Poland	MF444999	I	I	I	I	I
Squamanita odorata	K(M)178,855	England, UK	MK192934	I	I	I	I	I
Squamanita odorata	I	Ruaudin, France	EF091828	I	I	I	I	I
Squamanita odorata	DAOM225481	Honshu, Japan	I	I	I	I	I	I
Squamanita orientalis (holotype)	HKAS74862A	Yunnan, China	MW258851	MW258903	MW324509	MW289799	I	MW258930 & MW258881
Squamanita paradoxa	GG_BM05B	Wales, UK	I	EF535266	I	I	I	I
Squamanita paradoxa	A. Leclerque s.n.	Belgium	MK377323	I	I	I	I	I
Squamanita paradoxa	herb. A. Leclerque s.n. (BR)	Belgium	MK408620	I	I	I	I	I
Squamanita paradoxa	TENN: 063549	Wales, UK	GU296096	I	I	I	I	GU 296095
Squamanita pearsonii	E:204926	Scotland, UK	MK192940	I	I	I	I	I
Squamanita pearsonii	E:282464p	Wales, UK	MK192941	I	I	I	I	I
"Squamanita pseudofimbriata"	WRSL RRy-2013-0001	Poland	MF444997	I	I	I	I	I
Squamanita schreieri (epitype)	ZT Myc 2158	Baden-Württemberg, Germany	MW258852	MW258904	MW324510	MW289801	I	MW258931 & MW258882
Squamanita sororcula (holotype)	HKAS107306A	Yunnan, China	MW258850	MW258902	MW324507	I	I	MW258929 & -
Squamanita umbonata	TENN:57939	North Carolina, USA	EF184305	I	I	I	I	I
Squamanita umbonata	DAOM199323	Rhode Island, USA	I	AF261508	I	I	I	I
"Squamanita umbonata"	R.E.Halling7691 (NY79971)	Alajuela, Costa Rica	MW258853	MW258905	MW324506	MW289800	I	MW258932 & MW258883

Taxon	Snerimen	l ocality	ШS	1151	TFF1-0	RPR7	RPR1	185
		6			5			PNS1/NS41 & NS51/NS8
"Squamanita umbonata"	H.E.Bigelow17431(NY2776224)	Massachusetts, USA	MW258854	MW258906	1	I	I	MW258933 & MW258884
"Squamanita umbonata"	C.BAS3808 (NY1840398)	Massachusetts, USA	MW258855	MW258907	I	I	I	MW258934 & MW258885
"Squamanita umbonata"	HKAS107325A	Liguria, Italy	MW258856	MW258908	MW324508	I	I	MW258935 & MW258886
Stagnicola perplexa	ALV17086	Denmark	MK351604	MK353788	I	MK359087	I	MK353797
Stropharia ambigua	AFTOL-ID 726	I	AY818350	AY646102	GU187756	DQ484054	I	DQ092924
Tubaria confragosa	AFTOL-ID 498	I	DQ267126	AY700190	I	DQ408113	I	AY665776
Tubariomyces sp.	BB6018	Zambia	MK421965	EU600887	MK426220	EU600886	I	MK429974
Tulostoma calcareum	GB MJ6965	Sweden	NR_164015	KU519086	KU843881	I	I	Ι
Verrucospora flavofusca	AFTOL-ID 655	China	DQ241779	DQ470825	I	I	I	AY665783

Table 1 Specimens used to infer the phylogeny of Squamanitaceae in this study are listed with their Herbarium ID and accession numbers. Newly generated sequences are

Table 2 Specimens used to	o identify the mycocecidia	a of new species of	[:] Squamanita i	in this study	are listed with	their Herbarium ID
and accession numbers. Ne	wly generated sequences	are highlighted in	boldface			

Taxon	Specimen	Locality	ITS	LSU	TEF1-α
Amanita aff. excelsa	HKAS107325B	Italy	MW258872 MW258873	MW258922	-
"A. aff. hemibapha"	TRTC161164	Viet Nam	-	KF877244	KF877133
"A. aff. hemibapha"	TRTC161171	Viet Nam	-	KF877245	KF877134
"A. aff. hemibapha"	BPI HPUB 560	India	-	KF877234	KF877125
"A. aff. javanica"	HKAS56957	China	JX998039	JX998068	JX998017
"A. aff. javanica"	HKAS56863	China	JX998040	JX998071	JX998014
"A. aff. javanica"	HKAS53281	China	JX998041	JX998070	JX998016
A. aff. sepiacea sp. 1	HKAS107306B	China	MW258871	-	MW324505
A. aff. sepiacea sp. 2	HKAS74861	China	MW258869	-	-
A. aff. sepiacea sp. 2	HKAS74862B	China	MW258870	-	-
A. arkansana	RET-354-9	USA	JX844674	KF877197	KP724414
A. brunneolimbata	HKAS78459	China	MH508274	-	-
A. brunneolimbata	HKAS101392	China	MH508272	-	-
A. brunneolimbata	HKAS78460	China	MH508275	-	-
A. caesarea	RET-4271-1	Italy	JX844685	KF877207	KF877106
A. caesaroides	RET-356-10	China	_	KF877209	KF877107
A. cinnamomescens (isotype)	RET-290-5	Pakistan	JX844699	KF877221	KF877114
A. citrina	HKAS53467	Germany	MH508312	_	_
A. cochiseana nom. prov.	RET-498-1	USA	JX844705	KF877226	KP724516
A. fritillaria	HKAS100521	China	MH508360	_	_
A. fritillaria	HKAS100520	China	MH508359	_	_
A. garabitoana (paratype)	RET-333-6	Costa Rica	JX844711	KF877231	KF877122
A. hemibapha	RE-342-8	India	JX844716	KF877233	KF877124
A. jacksonii	RET-393-7	USA	JX844724	KF877252	KP724554
"A. javanica"	S-170	Japan	LC056770	LC056748	_
"A. javanica"	S-329	Japan	LC056772	-	LC164656
"A. javanica"	S-76	Japan	AB750726	LC164652	LC164654
A. kitamagotake	HKAS100824	China	MW258866	MW258918	MW324492
A. kitamagotake	HKAS100825	China	MW258867	MW258919	MW324493
A. kitamagotake	HKAS107309B	China	MW258874	MW258921	MW324495
A. kitamagotake	HKAS100826B	China	MW258868	MW258920	MW324494
A. kitamagotake (ex-holotype)	EN-4	Japan	AB721450	AB721450	LC164658
A. porphyria	HKAS92088	China	MH508506	-	_
A. porphyria	MB-100156	Germany	MH508507	-	-
A. rubromarginata (isotype)	RET-383-1	Japan	JX844739	KF877279	KF877164
A. sepiacea	HKAS80970	China	MH508589	-	-
A. sepiacea	HKAS79669	China	MH508588	-	-
A. sepiacea	HKAS74750	China	MH508587	-	-
A. sepiacea	HKAS70045	China	MH508586	-	-
A. sepiacea	HKAS68614	China	MH508585	-	-
A. sepiacea	HKAS56799	China	MH508584	-	-
A. sepiacea	HKAS100604	China	MH508582	-	-
A. sinocitrina	HKAS100530	China	MH508598	-	-

Table 2 Specimens used to identify the mycocecidia of new species of *Squamanita* in this study are listed with their Herbarium ID and accession numbers. Newly generated sequences are highlighted in boldface (*Continued*)

Taxon	Specimen	Locality	ITS	LSU	TEF1-α
A. sinocitrina	HKAS83445	China	MH508601	-	-
A. sinocitrina	HKAS100531	China	MH508599	-	-
A. vernicoccora (paratype)	7020	USA	GQ250401	GQ250416	-

(Spin-column) (Bioteke, China), and then cloned using pClone007 simple vector kit (Tsingke, Beijing). For the recently collected specimen (HKAS100826) and the volval remnants like structure on the cap of a *Squamanita* specimen (HKAS74862A), 10 clones of each ITS and nrLSU PCR products of each sampling point were randomly selected from a 90 mm petri dish for sequencing with primer pair M13–47/M13–48 to investigate the mycelium distribution of hosts and parasitising fungi. The cloning, PCR amplification and sequencing followed the protocols described by Cai et al. (2016) and Cui et al. (2018).

Results of sequencing

For specimen of HKAS100826, the ITS and nrLSU sequences were successfully amplified from all eleven sampling points (C1–C5, B1–B6). Among them, there are two bands occurring in gel electrophoresis diagram of each of the PCR products of ITS from six sampling points of mycocecidium (B1, B2, B3, B4, B5, B6), see Fig. 1. By cloning and sequencing all of the purified PCR products of ITS and nrLSU, a total of 50 ITS and 50 nrLSU sequences were generated from all points (C1–C5). After alignment and comparison, all of them belong to the same species, namely the mycoparasitic species itself. For the mycocecidium, each band of PCR productions with two bands were excised

from gel respectively, and then purified and sequenced, generating a total of 120 ITS and 60 nrLSU sequences from sampling points B1-B6. After analysis, two types of mushroom sequences were detected for each DNA locus. Statistically, 50% ITS, 90% nrLSU matched to the potential mycoparasitic species and 50% ITS, 10% nrLSU belong to the potential host species. For the volval remnants on the cap of the Squamanita specimen (HKAS74862A), 60% ITS, 90% nrLSU were the potential mycoparasitic species and 20% ITS, 0% nrLSU were assigned to the potential host species, others are *Trichoderma hirsutum* or vector sequences. For the other specimens of Squamanita and nearby Amanita, all sequences were amplified then directly sequenced or obtained by cloning from PCR products. One hundred forty-five sequences have been submitted to GenBank and used for phylogenetic analyses (Tables 1 and 2). The sequences of the two potential species of hosts are the same as those of the coexisting Amanita species respectively, and were finally identified to belong to A. kitamagotake (Fig. 4) and the A. sepiacea complex (Fig. 5). The potential mycoparasitic species are clustered into the genus Squamanita (Figs. 2 and 3).

DNA sequence alignment

Sequences used in study are listed in Tables 1 and 2 with their Herbarium ID and accession numbers. Four

datasets, namely 18S-5.8S-nrLSU-RPB2-TEF1- α , 18S-ITS-nrLSU-RPB2-TEF1- α , ITS-nrLSU-RPB2-TEF1- α , and ITS were used in our study to reinvestigate the phylogeny of *Squamanitaceae*, identify the phylogenetic position of the basidiomes and mycocecidia of the mycoparasitic species. From the first dataset to the last, a total of 4100,

4743, 1878 and 693 characters were used in the phylogenetic analyses, respectively. Moreover, two phylogenetic trees which only use ITS and nrLSU sequences were used to investigate the phylogeny of *Squamanitaceae* are provided as additional files (Additional files 1 and 2), respectively. The final alignments have been submitted to

TreeBase (https://www.treebase.org/, nos.: 27,493, 27, 494, 27,496, 27,497, 27,498, 27,499).

For each dataset, the sequences were aligned using MAFFT v6.8 (Katoh et al. 2005), manually edited with BioEdit v7.0.9 (Hall 1999) and concatenated with Phyutility v2.2.1 (Smith and Dunn 2008). Unsampled gene regions were coded as missing data. In the concatenated datasets, all introns of RPB2 and TEF1-α were excluded because of the difficulty in alignment. Maximum likelihood (ML) analyses were performed using IQ-TREE 1.6 (Trifinopoulos et al. 2016). Bayesian Inference (BI) analyses were used to analyze the datasets with MrBayes v3.1.6 (Ronquist et al. 2012). The optimal substitution models for each dataset were determined by using the Akaike Information Criterion (AIC) implemented in MrModeltest v2.4 (Nylander 2004), with 18S, 5.8S/ITS and nrLSU treated as a single block. In ML analyses, the substitution model options for four datasets were auto evaluated after provided partition file by using IQ-TREE 1.6 (http://iqtree.cibiv.univie.ac.at/), clade support for

the ML analyses was assessed using an SH-aLRT test with 1000 replicates (Guindon et al. 2010) and 1000 replicates of the ultrafast bootstrap (UFB) (Hoang et al. 2018). In the ML analyses, nodes with support values of both SH-aLRT \geq 80 and UFB \geq 95 were considered well supported, nodes with one of SH-aLRT \ge 80 or UFB \ge 95 were weakly supported, and nodes with both SH-aLRT < 80 and UFB < 95 were unsupported, and the other parameters use the default settings. For BI analyses, the selected models for four datasets were 18S-5.8SnrLSU(GTR + I + G)-RPB2(GTR + I + G)-TEF1- α (GTR + I + G), 18S-ITS-nrLSU(GTR + I + G)-RPB2(SYM + I)-TEF1- α (SYM + I + G), ITS(SYM + G)-nrLSU(HKY + I)-TEF1- α (SYM + G), and ITS (GTR + G) respectively. Bayesian analyses used the selected models and four chains were run simultaneously for 2 million generations with trees sampled every 100 generations. The sampling of the posterior distribution was considered to be adequate when the average standard deviation of split frequencies was lower than 0.01. Chain convergence was

determined by checking the effective sampling size (ESS > 200) in Tracer v. 1.5 (Rambaut and Drummond 2009). Nodes with Bayesian posterior probability (PP) > 0.90 were considered well supported. Subsequently, trees are summarized and posterior probabilities were obtained by using the sumt and sump command implemented in MrBayes by discarding the first 25% generations as burn-ins.

RESULTS

For the four datasets, topologies of the phylogenetic trees generated from ML and BI analyses are nearly identical with minimal variation in statistical support values, and thus only the trees inferred from the ML analyses are displayed. The tree generated from the 18S-5.8S-nrLSU-RPB2-TEF1- α dataset reveals that Squamanita, Cystoderma, Phaeolepiota, Floccularia, and Leucopholiota form a monophyletic clade with weakly statistical support in ML analysis but with strong statistical support in BI analysis (SH-aLRT/UFB/PP = 88/94/ 0.99), Squamanita and Leucopholiota are sister groups of Floccularia (SH-aLRT/UFB/PP = 98.4/100/0.99), Phaeole*piota* nested within *Cystoderma* (SH-aLRT/UFB/PP = 99.9/100/0.99), and Squamanita is a monophyletic group with strong statistic support in both of ML and BI analyses (SH-aLRT/UFB/PP = 99.3/100/1) (Fig. 2). Taking the study of Matheny and Griffith (2010) and Kalichman et al. (2020) into consideration, the family Squamanitaceae is formally emended to accommodate the above-mentioned five genera. Besides, both trees generated from 18S-5.8SnrLSU-RPB2-TEF1- α and 18S-ITS-nrLSU-RPB2-TEF1- α datasets reveal that the three potential Squamanita species from China are novel (Figs. 2 and 3). They are described below as S. mira, S. orientalis and S. sororcula, respectively. The tree generated from the 18S-ITS-nrLSU-RPB2-TEF1- α dataset also shows that several "S. umbonata" from North America, Europe and East Asia harbor a complex of species, with six subclades in the phylogenetic tree (Fig. 3), and one "S. umbonata" from Central America harbors a monophyletic clade with a sequence from North Carolina, USA (Fig. 3). The trees generated from ITSnrLSU-TEF1- α and ITS datasets reveal that the host of S. mira is A. kitamagotake (Fig. 4), and those of S. orientalis and S. sororcula are species of the A. sepiacea complex (Fig. 5).

TAXONOMY

Squamanitaceae Jülich, Biblthca Mycol. 85: 390 (1981). Type: Squamanita Imbach, Mitt. Naturf. Ges. Luzern 15: 81 (1946).

Synonym: Cystodermataceae Locq., *Mycol. gén. struct.*: 108 (1984); nom. inval. (Art. 36.1, lacking a Latin diagnosis or reference to a previously published Latin diagnosis).

Emended description: Basidiome lepiotoid to tricholomatoid, small to medium-sized, with pileus and central stipe; lamellae adnexed to adnate, or with decurrent tooth, never free. Stipe with or without annulus. Mycocecidia subglobose or subcylindrical to clavate fusiform. Stipe and pileus often with a floccose layer composed of loose sphaerocysts. Hyphal system monomitic. Hyphae cylindrical or slightly inflated, thin-walled, smooth, with clamps. Cystidia absent or present; if present, thin- to slightly thick-walled, smooth. Basidia narrowly clavate, 4spored. Basidiospores subglobose to ellipsoid or subreniform, rarely angular, thin- to slightly thick-walled, colorless, yellowish or brownish mostly smooth, in some taxa finely verrucose to finely echinulate, without germ pore, amyloid or inamyloid, not or slightly dextrinoid. Conidia present or absent, if present, globose, subglobose, ovoid, irregularly clavate, cylindrical, ellipsoid, broadly fusiform or fusiform, 7–16 (– 19) × 4–7.5 (– 12.5) μ m, with clamps when young, later more or less bifid at base, colourless to pale brownish yellow, smooth or ornamented, with thickened wall, development of conidia basifugal. Conidiophores colourless, septate when young, thin walled, densely branching, 4-6 µm wide, with clamps, the older conidia-bearing branches non-septate, sickle-shaped. Chlamydospores present or absent, if present, obovoid, clavate, rarely ventricose-fusiform, rectangular to variously shaped, inamyloid, colorless to yellowish, thick-walled.

Substrate: On soil, wood or parasitizing agarics.

Genera included: Squamanita, Cystoderma, Phaeolepiota, Leucopholiota, and Floccularia.

Notes: Here we fix the application of the generic name *Squamanita* by lecto- and epitypfiying the type species of the genus, *S. schreieri*, and describe the new species discovered in this study.

Squamanita schreieri Imbach, Mitt. Naturf. Ges. Luzern 15: 81 (1946).

Type: Imbach, Mitt. Naturf. Ges. Luzern 15: 80 [unnumbered plate] (1946) –lectotype designated here (MBT 394854). Germany: Baden-Württemberg, Taubergiessen Nature Reserve, Alluvial forest, close to a Populus tree, 10 Oct 1991, Leg. M. Wilhelm (no. 295) ZT Myc 2158 – epitype designated here (MBT 394983).

Notes: The original description cited the following collections: "Schreier, 17 Jul. 1935; Schreier, 4 Aug. 1936; Schreier, 8 Aug. 1937; Arndt, 11 Jul. 1942; Haller, 17 Oct. 1943; Furrer, Schlapfer & Imbach, 18 Jul. 1944; Rohl-Wütherich, Aarau & Imbach, 31 Jul. 1945". None of these original collections could be located in G, and the only remaining original material is the illustration provided by Imbach which is therefore designated as lectotype here. As a specimen is essential to fix the application of the name, we designate as an epitype a modern collection in Eidgenössische Technische Hochschule Zürich which fits the original diagnosis and plate.

(these four specimens are highlighted in boldface), with SH-aLRT (left), ultrafast bootstrap (UFB) (middle), and PPs values (right) near by the corresponding node. Only one of SH-aLRT > 80 or UFB > 95 for ML and PPs > 0.90 for BI are indicated along branches (SH-aLRT/UFB/PP). The sequences which were regarded as *A. kitamagotake* in Endo et al. (2017) are marked by asterisks (*)

Squamanita mira J. W. Liu & Zhu L. Yang, *sp. nov.* — *Fungal Names* FN570781;

MycoBank 836,584. (Figs. 6 and 7).

Etymology: —*mirus* (Lat.), wonderful or extraordinary, referring to the wonderful basidiome.

Diagnosis: S. mira differs from other species of the genus by the mycocecidia which have a limbate volva-like structure and the absence of cystidia.

Type: China: *Yunnan Province*: Ailaoshan Natural Reserve, Chuxiong, Nanhua, in the forests dominated by

corresponding node. Only one of SH-aLRT > 80 or UFB > 95 for ML and PPs > 0.90 for BI are indicated along branches (SH-aLRT/UFB/PP)

Fagaceae and *Pinaceae*, 24°54′27.53″N, 100°49′14.91″E, 2235 m elev., 10 Aug. 2017, *J. W. Liu 904* (HKAS100826A – holotype; GenBank Acc. nos.: 18S = MW258926 & MW258878, ITS = MW258847, nrLSU = MW258899, TEF1- α = MW324489, RPB2 = MW289796).

Description: Pileus ca. 40 mm diam, subconical to convex, distinctly umbonate; surface dry, yellowish brown (6C6–7) or honey-yellow (6C6–8), or viscid if moist, covered with dark orange (6A8), yellow-tawny (6B7–8) or honey yellow (6C6–8), repent, fibrillose squamules; margin incurved, strongly appendiculate, irregularly and densely corniform and fibriform squamules derived from breaking up of the veil, and slightly paler than the pileus surface. *Lamellae* adnexed to adnate, moderately

crowded, narrow; edge irregularly serrate-dentate or subundulate. *Stipe* 43–46 × 12–24 mm, subcylindrical, densely covered with brown (6A7–8), tawny yellow (6B7–8) to yellowish brown (5A6–8), appressed or recurved fibrillose and villiform squamules, at the upper part of the stipe covered with fluffy and villose, brown (5A6–8), tawny yellow (6B7–8) to yellowish brown (6C6–7) appressed or erect, fibrillose or obliquely lacerate scales arranged in irregular rings, 4–6 mm from apex, extreme apex off-white (1A1–2) and subglabrous. *Mycocecidia* subglobose to napiform, 40–46 × 5–16 mm, nearly smooth, whitish (1A1) or locally yellow (6A4–5) on external surface; *Volval limb* arising from margin of mycocecidia, 6–20 mm tall; context of pileus and stipe

Fig. 6 a–b Basidiomes of Squamanita mira HKAS100826 (holotype) photos by Jian-Wei Liu. Bars: 20 mm. c Basidiomes of Amanita kitamagotake. HKAS100825. Photos by Jian-Wei Liu. Bars: 50 mm. Sampling points are marked by red dots labelled C1, C2, C3, C4, C5, (from basidiome) and B1, B2, B3, B4, B5, B6 (from mycocecidium)

white (1A1), with a strong aromatic smell, like that of *Tricholoma matsutake*; context of mycocecidia white, unchanging on exposure, odour not distinctive.

Basidiospores [60/1/1] (5.5–) 6–7 (–7.5) × 4–5 (6) µm, (Q = (1.16) 1.33–1.75 (–1.8), Qm = 1.53 ± 0.13), ellipsoid or subreniform, colorless, hyaline, smooth, inamyloid. Basidia 22–65 × 9–12 µm, fusiform to ventricosefusiform, hyaline; sterigmata 4–5 µm long; *Cystidia* absent. Subhymenium 10–20 µm thick, composed of 4– 7 µm wide filamentous hyphal segments. Lamellar trama regular, composed of colorless, thin-walled hyphae 4– 17 µm diam, branching, sometimes anastomosing. Pileipellis a cutis with transition to a trichoderm at regular intervals, composed of loosely and more or less radially arranged, thin-walled hyphae 90–200 (– 370) × 5–20 µm, and upper part of pileipellis often with fine brownish granular incrustations and yellowish to brownish filamentous hyphae, constricted at septa; *Mycocecidia* composed of abundant ovoid to subglobose inflated cells, and filamentous hyphae similar to those on the pileus, clamp connections present; chlamydospores not observed.

Ecology: Parasitic on *Amanita kitamagotake* (HKAS100826B, GenBank Acc. nos.: ITS = MW258868, nrLSU = MW258920, TEF1- α = MW324494; HKAS107309B, GenBank Acc. nos.: ITS = MW258874, nrLSU = MW258921, TEF1- α = MW324495) growing on soil under trees of *Fagaceae* and *Pinaceae*.

Distribution: Currently known from Jiangxi and Yunnan Province, central and Southwest China.

Notes: In this study, molecular evidence confirms that the hosts of *S. mira* as well as two collections of *Amanita* in the nearby area, within 2 km of *S. mira*, are *A. kitamagotake* (Figs. 4, 6).

Morphologically, *S. mira* highly resembles the informally published "*S. tropica*" ("nom. Prov.") (Bas 1965), because both are parasitic on basidiomes of *Amanita* and form a volva-like structure at the base of the stipe. Furthermore, they share abundant tawny squamules on the pileus surface, serrate-dentate or subundulate lamelae edges, irregular ring analogues on the upper part of the stipe and ellipsoid to subreniform basidiospores. However, *S. mira* differs from *S. tropica* in its subconical to convex pileus with a distinct umbo. The material of *S. tropica* is lost (Bas 1965).

Squamanita mira is also more or less similar to *S. schreieri* and the specimens under the two species complexes of "*S. umbonata*" from all over the world in some morphological features. However, *S. mira* can be distinguished from the aforementioned taxa by its mycocecidia with a limbate volva-like structure and absence of cystidia. Phylogenetically, they are grouped, however, in different clades (Figs. 2 and 3).

Additional specimens examined: China: Jiangxi Province: Jian, Jinggangshan City, Jinggangshan scenic spots, 800– 900 m elev. 19 July. 2019, *Chunlei Pan JGS001* (HKAS107309A, GenBank Acc. nos.: 18S = MW258927 & MW258879, ITS = MW258848, nrLSU = MW258900, TEF1- α = MW324490, RPB2 = MW289797). *Yunnan Province*: Ailaoshan Natural Reserve, Chuxiong, Nanhua, in the forests dominated by *Fagaceae* and *Pinaceae*, 24°53'46.23" N, 100°48'11.14"E, 2339 m elev., 11 Aug. 2020, *LCC002* (HKAS107737A, GenBank Acc. nos.: 18S = MW258928 & *Squamanita orientalis* J. W. Liu & Zhu L. Yang, *sp. nov.* — *Fungal Names* FN570782;

MycoBank 836585. (Figs. 8, 9 and 10).

Etymology: - orientalis (Lat.): from the East.

Diagnosis: S. orientalis differs from other species by its irregular fibrillose annular zone on the upper part of the stipe and ciliate squamules on the pileal margin, larger cystidia $(90-105 \times 17-27 \ \mu\text{m})$, and subglobose mycocecidia.

Type: **China**: *Yunnan Province*: Laowopo dunk, Chongren, Nujiang, 1700–1800 m elev., in forest dominated by *Fagaceae* and *Rhododendron*, 7 Aug. 2011, *Gang Wu 548* (HKAS74862A – holotype; GenBank Acc. nos.: 18S = MW258930 & MW258881, ITS = MW258851, nrLSU = MW258903, TEF1- α = MW324509, RPB2 = MW289799).

Description: Pileus ca. 40 mm diam, subconical to convex; surface dry, covered with yellowish brown (6C6–7), light brown (6D4–5) to dark brown (6E5) or dark grey (6E1–3), more or less radially arranged, repent, fibrillose squamules; margin with ciliate squamules derived from breaking up of the veil, and the color is slightly lighter than surface of pileus; volval remnants of host present on the disc, grey. *Lamellae* white (1A1), adnexed to adnate, moderately crowded, denticulate. *Stipe* 30 × 6–10 mm, nearly cylindric, usually tapering upward; surface densely covered by squamules arranged in irregular fibrillose annular zone at the upper part of the stipe,

extreme apex white (1A1) and nearly smooth, the part below the ring is covered with orange (6A6–7), tawny yellow (6C7) or yellowish brown (6D7–8) appressed or erect, obliquely lacerate scales. *Mycocecidium* subglobose 35×20 –30 mm, nearly smooth, and whitish or grey spots on external surface. The transitional zone between stem and mycocecidium with some irregular rings of tawny-ochraceous (6B7–8) or dingy brown (6E5) color, fibrillose, appressed, or with erect, obliquely upward-pointing scales or lacerate scales.

Basidiospores [50/1/1] (5-) 5.5-6 (-6.5) × 4-5 (-6) $\mu m [Q = (1.2-) 1.5-1.65, Q = 1.43 \pm 0.10]$, broadly ellipsoid, ellipsoid to elongate, sometimes subreniform in side view. Basidia $20-35 \times 5-10 \,\mu\text{m}$, subclavate, 4spored, fusiform to ventricose-fusiform, hyaline; sterigmata $3-4\,\mu m$ long; basal septa often with clamps. *Cystidia* numerous, $90-105 \times 17-27 \,\mu\text{m}$, fusiform to ventricose-fusiform, with obtuse to acute apex, upper part slightly to moderately thick-walled (up to $1 \, \mu m$ diam.), sometimes with refractive incrustations, hyaline. Lamellar trama regular, composed of colorless, thin-walled hyphae 4-15 µm diam, branching, sometimes anastomosing; clamps present and common. Subhymenium $10-15 \,\mu\text{m}$ thick, composed of $4-6 \,\mu\text{m}$ wide filamentous hyphal segments; volval remnants of host on pileus composed of ± irregularly arranged elements: inflated cells very abundant (to locally dominant), subglobose $(30-50 \times 30-50 \,\mu\text{m})$ or ovoid to broadly clavate $(30-60 \times 20-30 \,\mu\text{m})$, solitary and terminal, or in chains of 2-3 and then terminal, inflated cells sometimes external upset (up to 1 µm thick), usually colorless and hyaline, occasionally with brownish vacuolar pigments, and the majority of hyphae without clamp connection; inner part of volval remnants near pileus surface composed of ± irregularly arranged elements: inflated cells usually brownish to fawn colored, two types of filamentous hyphae in the tissues: either with filamentous hyphae usually colorless and hyaline, 2-6 µm wide, without clamp connection; or with hyphae similar to lotus root, $60-150 \times 4-15 \,\mu\text{m}$, swollen in the middle but constricted at septa, with clamp connection. Mycocecidium composed of abundant ovoid to subglobose inflated cells $(45-110 \times 24-65 \,\mu\text{m})$ and filamentous hyphae colorless and hyaline, 2-6 µm wide, with clamp connections similar to those on the pileus; chlamydospores not observed.

Ecology: Parasitic on *Amanita sepiacea* (HKAS74862B, GenBank Acc. nos.: ITS = MW258870) growing on soil under trees of *Fagaceae* and *Rhododendron*.

Distribution: Currently known from Yunnan Province, Southwest China.

Notes: Our morphological data and molecular phylogenetic evidences confirm that the host of *S. orientalis* and the collection of *Amanita* in the nearby area within two kilometers' range of *S. orientalis* are *A. sepiacea* (Figs. 5, 8, 10). Interestingly, some volval remnants of *A. sepiacea* are found on the center of the pileal surface of

Fig. 10 Microscopic features of volval remnants on the pileus of *Amanita sepiacea* (HKAS32519) and *Squamanita orientalis* (HKAS74862A, holotype). **a** the upper part of a volval remnant on the pileus of *A. sepiacea*. **b** the lower part of a volval remnant on the pileus of *A. sepiacea*. Drawings by Zhuliang Yang (2005). **c** Upper layer of a volval remnant on the pileus of *S. orientalis*. **d** Inner layer of a volval remnant on the pileus of *S. orientalis*. Drawings by Jianwei Liu. Bars = 20 µm. Cells with vacuolar pigment and vascular hyphae are dotted and shaded respectively. Hyphae with clamps belong to *S. orientalis*

S. orientalis (Fig. 8), and its anatomical features are those of *A. sepiacea* (Yang 2005) (Fig. 10), and the filamentous hyphae with clamp connection belong to *S. orientalis* (Fig. 10).

Squamanita orientalis is similar to *S. schreieri*. However, the latter species has no cystidia. Furthermore, the former is a parasite on *A. sepiacea*, while *S. schreieri* is possibly associated with *A. strobiliformis* or *A. echinocephala* (Bas 1965).

Squamanita orientalis is also similar to *S. sororcula* and *S. umbonata*. However, *S. orientalis* differs from *S. sororcula* by its irregular fibrillose annular zone on the upper part of the stipe and ciliate squamules on the pileal margin, and larger cystidia (90–105×17–27 μ m). In addition, there are ca. 50 and ca. 40 base differences in ITS and nrLSU regions between the two species respectively, and even though their hosts are identified as *A. sepiacea* for both species, there are ca. 25 different bases in the ITS region from host material. *Squamanita umbonata* differs from *S. orientalis* by its umbonate pileus, and narrower cystidia (60–95 × 9–20 μ m), cylindrical to clavate fusiform mycocecidia.

Squamanita sororcula J. W. Liu & Zhu L. Yang, *sp. nov.* — *Fungal Names* FN570782;

MycoBank 836586. (Figs. 11 and 12).

Etymology: —*sororcula* (Lat.): little sister, indicating a close relation with *S. orientalis*.

Diagnosis: *S. sororcula* differs from other species by without irregular fibrillose annular zone on the upper part of the stipe, with subglobose mycocecidia.

Type: **China**: *Yunnan Province*: Laojun Mountain, Jianchuan City, Dali, 26°38′51.792″N, 99°49′10.43E, 2756 m elev., in a forest dominated by plants of *Pinus yunnanensis*, 10 Aug. 2019, *Fa Li 237* (HKAS107306A – holotype; GenBank Acc. nos.: 18S = MW258929, ITS = MW258850, nrLSU = MW258902, TEF1- α = MW324507).

Description: Pileus medium-sized, ca. 45 mm diam, at first globose, then hemispheric, plano-convex with slightly incurved margin, thick-fleshed; surface buff (6B7–8), viscid when wet, covered with buff (6B7–8) floccose-fibrillose or slightly fibrillose squamules; pileal margin strongly appendiculate, with irregularly and densely corniform and fibrillose squamules derived from breaking up of the veil. *Lamellae* white (1A1), adnexed to adnate, moderately crowded, denticulate, rather thin, 6–7 mm wide. *Stipe* $50 \times 10-19$ mm, nearly cylindric, usually tapering upward; surface covered with buff (6B7–8) floccose-fibrillose or slightly fibrillose scaly zones, but not forming an irregular fibrillose annular zone at the upper part of the stipe, extreme apex white

and nearly smooth. *Mycocecidia* subglobose 35×25 mm, white (1A1) with brownish (6A4–5) to rusty (6B7–8) spots. The transitional zone between stem and mycocecidia with some irregular rings of tawny-ochraceous (6B7–8) or dingy brown (6E5), fibrillose, appressed, or erect, obliquely upward-pointing or lacerate scales. Context white (1A1), rather firm. Smell rather strongly musty when crushed.

Basidiospores [40/1/1] 5.5–7.5 (-9) × (3.5–) 4–5 (-5.5) μ m [Q = (1.2–) 1.3–1.8 (– 2), Q = 1.6 ± 0.8], broadly ellipsoid, ellipsoid to elongate, sometimes subreniform in side view. Basidia $20-35 \times 8-10 \,\mu\text{m}$, subclavate, 4spored, fusiform to ventricose-fusiform, hvaline; sterigmata 4-5 µm long; basal septa often with clamps. Pleurocystidia and cheilocystidia numerous, 60-90 × 13-17 µm, fusiform to ventricose-fusiform, with obtuse to acute apex, nearly all upper part of cystidia are slightly thick-walled (up to 1.5 µm), sometimes with refractive incrustations, hvaline. Lamellar trama regular, composed of colorless, thin-walled hyphae 5-10 µm diam, branching, sometimes anastomosing; clamps present and common. Subhymenium consisting of 4-6 µm wide filamentous hyphal segments, narrow. Pileipellis a cutis with transition to a trichoderm at regular intervals, composed of loosely and more or less radially arranged, thinwalled hyphae $60-120 \times 5-20 \,\mu\text{m}$, and at the upper of the pileipellis often with fine brownish granular incrustations on the yellowish to brownish filamentous hyphae, clamps present and common, occasionally with brown vacuolar pigments, 2-5 µm wide; Mycocecidia composed of abundant subglobose to broadly clavate inflated cells $(20-55 \times 20-40 \,\mu\text{m})$, and colorless and hyaline clampless filamentous hyphae, 2-6 µm wide, and clamped filamentous hyphae nearly $5-15\,\mu\text{m}$ wide similar to those on the pileus; chlamydospores not observed.

Ecology: Parastic on *Amanita sepiacea* (HKAS107306B, ITS = MW258871, TEF1- α = MW324505) growing on soil in forest dominated by *Pinus yunnanensis*.

Distribution: Currently known from Hunan and Yunnan Provinces, central and Southwest China.

Notes: Squamanita sororcula is similar to S. mira, S. orientalis, S. schreieri, S. umbonata, and other collections assigned to the "S. umbonata" complex. The differences between the first two and S. sororcula have been discussed above. Besides, S. sororcula differs from S. schreieri by the presence of cystidia and differs from S. umbonata by its subglobose mycocecidia.

Wang and Yang (2004) treated two collections (HKAS38127 and 38149) as "*S. umbonata*" collected from Hunan province, central China. Unfortunately, the collections have not been traced by us. However, the two collections are without an annular zone, and should be close to *S. sororcula* rather than *S. orientalis.*

Key to Squamanita worldwide

1	Basidiospores annyloid
2 (1)	Basidiospores 3.4–4 × 2.4–3 µm (Ecuador, host unknown)S. granullera Basidiospores 5–8 × 4–7 µm
3 (2)	Basidospores globose to subglobore (5–7.2 × 5–6.5 µm); cystalia clavate (25–55 × 15–20 µm); known mycocecidia pilaate to sipilatiom (Northeast America, host Galerina sp., Great Britain, host unknown)
4 (1)	Base of stipe emerging from a membranous, volva-like sheath mycocecidium
5 (4)	Pileus < 10 mm diam. (New Zealand, host unknown)
6 (5)	Pleus nearly 40 mm wide, subconical to correx pieus with a distinct umbo (Southrest China, host Amanta kitamagotale)
7 (4)	Hymenial cystidia present
8 (7)	Mycocecidia subglobose
9 (8)	Upper part of stipe with an irregular fibriliose annular zone; cystidia 90–105 × 17–27 µm (Southwest Chins, host Amanita sepiacea)
10 (8)	Transitional zone between stipe and mycocecidium with some irregular rings of tawny-ochranecous to dray strom, familose, with appressed, or ered, obliquely upward-pointing scales or locates acades (Northeas America, host unknown)
11 (7)	Pileus 60–100 mm diam. (Europe, host Amanita echinocephala or A. strabiliformia)
12 (11)	Preus 4–40 mm aiam
13 (12)) Pleus grayish to violaceous tilas with strongly contrasting dark purple squarrose scales centrally: lamellae whilish; chlamydospores globose, pitted (Great Britain and Northeast America, host Cystoduma amianthrum)
14 (13)	Pileus convex-plane; granules of basai part of the stips large (20–60 × 4–18 nm) and tending to be arranged in distinct horizontal row; lamellae broad, arcuate-admite, subdecurrent; broady admite or admixed. (Nothmest America and probably Europe, host Cystolerma amianthirum and possibly C. conchroniso)
15 (12)	Pleus with grayish like, purple, vinceous or brownish gray coloration and lacking yetlow or red tones; lameliae with like or grayish hones (Japan, host pobably Phaeologicida auros)
16 (15)	Basidiospores broadly elipsoid to broadly ovoid (6.5–6.5 (–9.3) × 4.2–6.2 µm); chianydospores usually bild from clamp connection, sightly thick-walled; basidiomes usually clustered on compact host lissues, odour fragman (grapes) (Europe and Northmast America, host Nebeloma mesophanum) S. odorata Basidiospores elipsoid (8–11 × 4.5–5. µm); chianydospores rounded to elongated, usually not bild, compisiously thick-walled; basidiomes usually solitary from fusicid deformed hosts; odour of perfume initially. Then unpleasant (Switzerland, host probably a Cystodotrm sp. probably not alflerent from <i>S</i> _parabose whose

DISCUSSION

Systematic position of Cystodermateae

Singer (1986) included in *Cystodermateae* the following seven genera, viz. Cystoderma, Dissoderma (current name Squamanita), Horakia (current name Verrucospora), Phaeolepiota, Pseudobaeospora, Ripartitella, and Squamanita. Based on the phylogenetic analyses of Matheny and Griffith (2010), Matheny et al. (2015), Vizzini et al. (2019), Kalichman et al. (2020) and our present studies, three genera among Cystodermateae, viz. Cystoderma, Phaeolepiota, and Squamanita together with Leucopholiota and Floccularia can be assigned to the Squamanitaceae within Agaricineae (agaricoid clade). Pseudobaeospora was recognized as a member of the Tricholomataceae s. str. within Tricholomatineae (tricholomatoid clade) in the multigene phylogenetic analyses of Sánchez-García and Matheny (2017) and He et al. (2019). Molecular data from a species of Verrucospora, V. flavofusca, confirm placement in Agaricaceae s.lat. with strong statistic support (SH-aLRT/UFB/PP = 95.4/98/0.99) in our study (Fig. 2). Oberwinkler (1976) and Singer (1986) supposed that Horakia (now included in Verrucospora) belonged to Thelephorales or Cystodermateae of Agaricales, respectively, which are incorrect placements based on our molecular phylogenetic data. Phylogenetic placements of *Ripartitella*, and *Cystodermella*, which was separated from Cystoderma by Harmaja (2002), are unclear at present, although previous research based on nLSU, RPB1 and ITS molecular sequences indicated that Ripartitella and Cystodermella are near Cercopemyces (Baroni et al. 2014). Our study (Fig. 2) is consistent with Baroni et al. (2014), and these three genera are close to *Hydnangiaceae* in our phylogenetic tree (Fig. 2).

Saar et al. (2016) treated Phaeolepiota aurea as Cystoderma aureum because it was nested within Cystoderma. However, P. aurea, with large inamyloid fusoid and asperulate spores, differs from Cystoderma, species of which have amyloid, ellipsoid, oblong or fusiform and smooth spores. In our multigene phylogenetic tree (Fig. 2), and the supplementary trees of Varga et al. (2019), P. aurea nested within Cystoderma, but clustered with Cystoderma superbum (Fig. 2), a unique species commonly reported to be amyloid but in only a small area of the basidiospore surface, which is a morphotaxonomic character that differs from other species of Cystoderma. In the study of Matheny and Griffith (2010), and supplementary trees of that study (Additional files 1 and 2), a close relationship among P. aurea, Cystoderma and C. superbum was not well supported. Therefore, for the moment, we continue to recognize Phaeolepiota for P. aurea. Further studies with more samples and using more DNA makers are necessary to clarify the position of *P. aurea* and *C. superbum* in relation to other species of Cystoderma.

Up to now, 12 described species of *Squamanita* have been accepted, although Matheny and Griffith (2010: Table 1) listed 15, including three not validly published designations: *S. cettoiana* (nom. inval.), *S. phaelepioticola* (nom. prov.), and *S. tropica* (nom. prov.).

Diversity of the "S. umbonata" species complex

Our study indicated that material of "Squamanita umbonata" from the Northern Hemisphere clustered into two species complexes each consisting of several different species (Figs. 2 and 3), including S. orientalis, S. sororcula, and several undefined specimens. Morphological characteristics of collection R. E. Halling 7691 (NY79971) (Fig. 13) from Costa Rica are mostly consistent with the descriptions of the type (NY27684) by Sumstine (1914) and Bas (1965), with an umbonate pileus, cylindrical to clavate fusiform mycocecidia, and thin-walled cystidia. However, considering that the type of S. umbonata was from Pennsylvania, USA, we are reluctant to identify R. E. Halling 7691 as S. umbonata until molecular data from the type are available.

The collection H. E. Bigelow 17431 (NY2776224) (Fig. 13) has a subglobose mycocecidium, slightly smaller basidiospores $(5-7 \times 3.5-5 \,\mu\text{m})$ and cystidia $(45-65 \times 12-18 \,\mu\text{m})$ in comparison with those of S. umbonata, and the mycocecidium is composed of abundant inflated cells, indicating the possibility of Amanita as host. C. Bas 3808 (NY1840398) (Fig. 13) was published as S. umbonata by Bas (1965). However, Cortés-Pérez et al. (2014) showed that the upper parts of the cystidia in this collection were slightly to moderately thick-walled, which is consistent with our observations of the collection. Phylogenetically C. Bas 3808 forms a monophyletic branch with DAOM 199323 [GenBank accession no.: AF261508], submitted by Moncalvo et al. (2002), and may well be conspecific with that (Fig. 3). A collection from Italy ((HKAS107306A; Fig. 13) is sister to H. E. Bigelow 17, 431, C. Bas 3808, and DAOM 199323 (Fig. 3), and its hosts belong to the species complex of A. excelsa MW258872 (GenBank accession no.: and MW258873). Squamanita umbonata is also reported from Japan (Ikeda 1996), Italy (Vizzini and Girlanda 1997), and Mexico (Cortés-Pérez et al. 2014). Further efforts are necessary to reveal the species diversity of "S. umbonata" globally and delimit the constituent species, including a clear application of the name S. umbonata.

Host preference or specificity of Squamanita species

Our study reveals that the basidiomes of *S. mira* are composed of its own hyphae, while the mycocecidia also include hyphae of the host, which is consistent with the observations on *S. paradoxa* by Mondiet et al. (2007)

and Griffith et al. (2019). Interestingly, host hyphae are found in the volval remnants that are attached to the pileal surface of S. orientalis (Figs. 5, 8, 10). This character may provide additional help for the host identification of Squamanita. Although sometimes the basidiomes of Squamanita may macromorphologically deform the hosts, most of the time the shapes of infected hosts (mycocecidia) still largely maintain consistent morphological characteristics with nearby uninfected basdiomes of the same species. Our study showed that S. orientalis, S. sororcula and "S. umbonata" (HKAS107325A) from Italy, with subglobose mycocecidia, are parasitic on A. sect. Validae, while S. mira, with the sheathing volva arising from the margin of a bulb, is parasitic on A. kitamagotake. Therefore, the shape and the size of the mycocecidia could be a reliable morphological character at species level.

CONCLUSION

The monophyly of the family *Squamanitaceae* was confirmed by multi-gene Bayesian phylogenetic analysis, with five genera, namely *Cystoderma*, *Phaeolepiota*, *Squamanita*, *Floccularia* and *Leucopholiota* falling in the family. Three new species from China, parasitizing two different species from two sections of *Amanita*, were uncovered and described based on morphological and molecular evidence. Furthermore, a multi-gene phylogenetic analysis on "*Squamanita umbonata*" from North America, Central America, Europe, and East Asia showed that it represents two species complexes harboring eight subclades. Further morphological studies are needed to reveal the species diversity and distribution patterns of "*Squamanita umbonata*".

Abbreviations

nrLSU: The large nuclear ribosomal RNA subunit; ITS: The internal transcribed spacers 1 and 2 with the 5.8S rDNA; 5.8S: 5.8S gene; 18S: The small subunit region; TEF1-a: Translation elongation factor 1-a; RPB1: RNA polymerase II largest subunit; RPB2: RNA polymerase II second largest subunit; CTAB: Cetyltrimethyl ammonium bromide; HKAS: Herbarium of Cryptogams, Kunming Institute of Botany of the Chinese Academy of Sciences; ML: Maximum likelihood; UFB: Ultrafast bootstrap support values of IQTREE; SH-aLRT: The Shimodaira–Hasegawa-like aLRT test support values; PP: Bayesian posterior probability; NY: The New York Botanical Garden

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s43008-021-00057-z.

Additional file 1. Maximum-Likelihood (ML) phylogenetic tree of *Squamanitaceae* inferred from ITS sequences, with SH-aLRT (left), ultrafast bootstrap (UFB) (right), only one of SH-aLRT > 80 or UFB > 95 for ML are indicated along branches (SH-aLRT/UFB). New species *Squamanita mira*, *S. orientalis, S. sororcula* are highlighted in boldface.

Additional file 2. Maximum-Likelihood (ML) phylogenetic tree of *Squamanitaceae* inferred from LSU sequences, with SH-aLRT (left), ultrafast bootstrap (UFB) (right), only one of SH-aLRT > 80 or UFB > 95 for ML are indicated along branches (SH-aLRT/UFB). New species *Squamanita mira*, *S. orientalis, S. sororcula* are highlighted in boldface.

Acknowledgements

We are very grateful to the fungaria of New York Botanical Garden, Eidgenössische Technische Hochschule Zürich, and also Reinhard Berndt, Fabrizio Boccardo, Li-Hong Han, Fa Li, and Gang Wu for providing specimens and images for this study; Shannon Asencio for providing helpful locality information on DAOM 199323 and DAOM 225481; and Bang Feng, Xiao-Bin Liu, Yan-Liang Wang, and Gang Wu for revising early manuscript.

Adherence to national and international regulations

Not applicable.

Authors' contributions

Zhu L. Yang and Jian-Wei Liu designed the research. Jian-Wei Liu performed experiments, analyzed data and wrote the manuscript. Zhu L. Yang, Zai-Wei Ge, Egon Horak, Alfredo Vizzini, Roy. E. Halling revised the manuscript. Egon Horak, Alfredo Vizzini, Roy. E. Halling and Chun-Lei Pan also provided some specimens. The authors read and approved the final manuscript.

Funding

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0503) and the Biodiversity Investigation, Observation and Assessment Program (2019–2023) of the Ministry of Ecology and Environment of China, and the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (No. 31961143010).

Availability of data and materials

The datasets generated for this study (Tables 1 and 2) can be accessed via GenBank: https://www.ncbi.nlm.nih.gov/genbank/. Alignments analysed during the current study are available at TreeBase: https://www.treebase.org/.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. ²The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 Yunnan, People's Republic of China. ³CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. ⁴Schlossfeld 17, A-6020 Innsbruck, Austria. ⁵Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125 Torino, Italy. ⁶Institute of Systematic Botany, New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458-5126, USA. ⁷Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, Heilongjiang, China.

Received: 18 August 2020 Accepted: 16 February 2021 Published online: 03 March 2021

References

- Baroni TJ, Kropp BR, Evenson VS, Wilhelm M (2014) *Cercopemyces crocodilinus*, a new genus and species related to *Ripartitella*, is described from North America. Mycologia 106(4):785–796. https://doi.org/10.3852/13-312
- Bas C (1965) The genus Squamanita. Persoonia 3(3):331–359
- Bas C, Læssøe T (1999) Squamanita granulifera sp. nov. A first record of Squamanita (Agaricales) from South America. Kew Bulletin 54:811–815. https://doi.org/10.2307/4110881
- Bas C, Thoen D (1998) Squamanita citricolor, a new species from Central Africa. Persoonia 17:135–139
- Cai Q, Cui YY, Yang ZL (2016) Lethal Amanita species in China. Mycologia 108: 993–1009. https://doi.org/10.3852/16-008
- Cervini M (2008) *Squamanita fimbriata*, una spettacolare specie micoparassita. Rivista Di Micologia 51:213–220
- Cortés-Pérez A, Guzmán G, Ramírez-Guillén F (2014) *Squamanita umbonata* (fungi, Agaricales, Tricholomataceae), primer registro en México. Actabotánica Mexicana 108:105–111. https://doi.org/10.21829/abm108.2014.202
- Cui YY, Cai Q, Tang LP, Liu JW, Yang ZL (2018) The family Amanitaceae: molecular phylogeny, higher-rank taxonomy and the species in China. Fungal Diversity 91:5–230. https://doi.org/10.1007/s13225-018-0405-9
- Endo N, Fangfuk W, Kodaira M, Sakuma D, Hadano E, Hadano A, Murakami Y, Phosri C, Matsushita N, Fukuda M (2017) Reevaluation of Japanese Amanita section Caesareae species with yellow and brown pileus with descriptions of Amanita kitamagotake and A. chatamagotake spp. nov. Mycoscience 58:457– 471. https://doi.org/10.1016/j.myc.2017.06.009
- Fraiture A, Decock C, Leclerque A (2019) Squamanita paradoxa, a nice addition to the Belgian mycoflora. Sterbeeckia 35:84–89
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes-applications to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118. https://doi.org/10.1111/j.1365-294X.1993. tb00005.x
- Griffith GW, Gajda KP, Detheridge AP, Douglas B, Bingham J, Turner A, Bowmaker V, Evans DA, McAdoo WG, Dentinger BTM (2019) Strangler unmasked: parasitism of *Cystoderma amianthinum* by *Squamanita paradoxa* and *S. pearsonii.* Fungal Ecology 39:131–141. https://doi.org/10.1016/j.funeco.201 8.11.012
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML3.0. Systematic Biology 59:307–321. https://doi.org/10.1093/sysbio/syq010
- Gulden G, Bendiksen E, Brandrud TE (1977) New agaric, *Squamanita fimbriata* sp. nov., and a first find of *Squamanita odorata* in Norway. Norwegian Journal of Botany 24:155–158
- Halama M (2016) Squamanita odorata (Agaricales, Basidiomycota), new mycoparasitic fungus for Poland. Polish Botanical Journal 61(1):181–186. https://doi.org/10.1515/pbj-2016-0008
- Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98
- Harmaja H (1987) Studies on the agaric genera *Singerocybe* n. gen. and *Squamanita*. Karstenia 27:71–75. https://doi.org/10.29203/ka.1987.254
- Harmaja H (2002) *Amylolepiota, Clavicybe* and *Cystodermella,* new genera of the Agaricales. Karstenia 42:39–48. https://doi.org/10.29203/ka.2002.386
- He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck BED, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, Da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli JN, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99:105–367. https://doi.org/10.1007/ s13225-019-00435-4
- Henrici A (2013) Squamanita in Britain and Europe. Field Mycology 14(2):56–63. https://doi.org/10.1016/j.fldmyc.2013.03.008

- Hibbett DS (1996) Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Molecular Biology and Evolution 13:903–917. https://doi.org/10.1093/oxfordjournals. molbey.a025658
- Hoang DT, Chernomor O, Haeseler AV, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35:518–522. https://doi.org/10.1093/molbev/msx281
- Holden L (2005) Squamanita pearsonii collected in Aberdeenshire. Field Mycology 6:10–11
- Horak E (1968) Synopsis generum Agaricalium. Beitr. Krypt. Flora Schweiz 13:1–741 Ikeda Y (1996) Colored Illustrations of Fungi of Ishikawa. The Hokkoku Shimbun,
- Japan Imbach EJ (1946) Pilzflora des Kantons Luzern und der angrenzen Innerschweiz.
- Mitteilungen der Naturforschenden Gesellschaft Luzern 15:5–85
- Jülich W (1981) Higher taxa of Basidiomycetes. Bibliotheca Mycologica 85:1–485 Kalichman J, Kirk PM, Matheny PB (2020) A compendium of generic names of
- agarics and Agaricales. Taxon 69(3):425–447. https://doi.org/10.1002/tax.12240 Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33(2):511–
- 518. https://doi.org/10.1093/arc/gki198
- Locquin M (1984) Mycologie générale et structurale. Masson, Paris Matheny PB, Griffith GW (2010) Mycoparasitism between *Squamanita paradoxa* and *Cystoderma amianthinum* (Cystodermateae, Agaricales). Mycoscience 51: 456–461. https://doi.org/10.1007/S10267-010-0052-9
- Matheny PB, Moreau PA, Vizzini A, Harrower E, Haan AD, Contu M, Curti M (2015) *Crassisporium* and *Romagnesiella*: two new genera of dark-spored Agaricales. Systematics and Biodiversity 13:28–41. https://doi.org/10.1080/14772000.2014. 967823
- Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin S, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clémencon H, Miller OK (2002) One hundred and seventeen clades of euagarics. Molecular Phylogenetics and Evolution 23:357–400. https://doi.org/10.1016/S1055-7903 (02)00027-1
- Mondiet N, Dubois MP, Selosse MA (2007) The enigmatic Squamanita odorata (Agaricales, Basidiomycota) is parasitic on *Hebeloma mesophaeum*. Mycological Research 111:599–602. https://doi.org/10.1016/j.mycres.2007.03. 009
- Nagasawa E, Hongo T, Narita D (1990) *Squamanita odorata* (Agaricales) from Japan. Reports of the Tottori Mycological Institute 28:135–141
- Nylander J (2004) MrModeltest 2.2. Computer software distributed by the University of Uppsala
- Oberwinkler F (1976) Eineagaricoide Gattung der Thelephorales. Sydowia 28:359– 361
- Rambaut A, Drummond AJ (2009) Tracer. Version 1.5. Available at http://beast.bio. ed.ac.uk/Tracer
- Redhead SA, Ammirati JF, Walker GR, Norvell LL, Puccio MB (1994) Squamanita contortipes, the rosetta stone of a mycoparasitic agaric genus. Revue Canadienne Botanique 72:1812–1824. https://doi.org/10.1139/b94-223
- Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to *Cordyceps teleomorphs*. Mycologia 97:84–98. https://doi.org/10.1080/1557253 6.2006.11832842
- Reid DA (1983) A second British collection of *Squamanita paradoxa*. Bulletin of the British Mycological Society 17:111–113. https://doi.org/10.1016/S0007-152 8(83)80038-8
- Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539–542. https://doi.org/10.1093/sysbio/sys029
- Saar I, Mešić A, Tkalčec Z, Peintner U, Kušan I (2016) *Cystoderma carpaticum* (Basidiomycota, Agaricales), a rare fungus newly recorded from Croatia. Phytotaxa 269(1):21–32. https://doi.org/10.11646/phytotaxa.269.1.3
- Sánchez-García M, Matheny PB (2017) Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom-forming fungi? A case study in the Tricholomatineae (Agaricales). Evolution 71:51–65. https://doi.org/1 0.1111/evo.13099
- Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koelz Scientific Books, Koenigstein
- Smith SA, Dunn CW (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715–716. https://doi.org/1 0.1093/bioinformatics/btm619

Stridvall AS (1994) Släktet *Squamanita* Imbach i Sverige. Jordstjärnan 15:24–37 Sumstine DR (1914) New or interesting fungi. Mycologia 6:32–36

- Trifinopoulos J, Nguyen LT, Haeseler AV, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1):W232–W235. https://doi.org/10.1093/nar/qkw256
- Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3(4):668–678. https://doi.org/10.1038/s41559-019-0834-1

Vesterholt J (1991) Vellugtende Knoldfod-maske en parasit? Svampe 24:11

- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172:4238–4246. https://doi.org/10.1128/jb.172.8.423 8-4246.1990
- Vizzini A, Consiglio G, Marchetti M (2019) Mythicomycetaceae fam. nov. (Agaricineae, Agaricales) for accommodating the genera *Mythicomyces* and *Stagnicola*, and *Simocybe parvispora* reconsidered. Fungal Systematics and Evolution 3:41–56. https://doi.org/10.3114/fuse.2019.03.05
- Vizzini A, Girlanda M (1997) Squamanita umbonata (Sumst.) Bas, a mycoparasite of Inocybe oblectabilis (Britz.) Sacc. preliminary note. Allionia 35:171–175
- Wang HC, Yang ZL (2004) *Squamanita*, a new record to China. Mycosystema 23: 146–148
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press California, San Diego, pp 315–322
- Yang ZL (2005) Flora fungorum sinicorum. In: Amanitaceae, vol 27. Science Press, Beijing (in Chinese)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

