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IMA GENOME‑F 17A
Draft genome sequence of an Armillaria species 
from Zimbabwe
Introduction
The genus Armillaria includes at least 38 species, most 
of which are facultative necrotrophs (Gregory and Rish-
beth 1991). Pathogenicity of these organisms can result 
in Armillaria root and stem rot and what is referred to 
as shoestring root rot (Morrison 1991). This disease can 
bring about massive devastation to woody plants grown 
for horticulture, agriculture, as well as natural and man-
aged forests across the various continents (Baumgartner 
and Rizzo 2001, 2002; Guillaumin et al. 1993; Labbé et al. 
2015). The saprophytic nature of some Armillaria spp. 
results in enhancement of forest ecosystems through 
the breakdown of woody material, resulting in carbon 
and mineral cycling (Baumgartner et  al. 2011; Hein-
zelmann et  al. 2019). Transition from a saprophytic to 
a pathogenic lifestyle, and vice versa, can occur due to 

intra-species variation, forest management systems, the 
state of the host (e.g. stressed or healthy), as well as envi-
ronmental factors (e.g. elevation) (Legrand et  al. 1996; 
Prospero et al. 2004; Tsykun et al. 2012).

Various groups have conducted omics-based research 
on Armillaria species (Akulova et  al. 2020; Anderson 
et al. 2018; Caballero et al. 2022; Collins et al. 2017; Col-
lins et  al. 2013; Heinzelmann et  al. 2020; Kolesnikova 
et  al. 2019; Linnakoski et  al. 2021; Misiek et  al. 2011; 
Misiek and Hoffmeister 2012; Sipos et  al. 2017; Son-
nenbichler et  al. 1997; Sun et  al. 2020; Wingfield et  al. 
2016a, b; Zhan et  al. 2020). These genomics, proteom-
ics and metabolomics studies were done to gain insight 
into the molecular mechanisms and biochemical proper-
ties that drive the pathogenicity and virulence of Armil-
laria spp. This information would eventually help to 
develop efficient strategies for identifying these fungi, 
containing their spread, and minimising damage to forest 
ecosystems.

The previously determined nuclear and mitochon-
drial genomes of various Armillaria species are pro-
viding invaluable resources for genome-based research 
(Table  1). Studies using these genomes have broad-
ened our understanding of the biology of the Armil-
laria species and the evolution of their genomes. For 
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example, Sipos et al. (2017) showed that genome evo-
lution in the genus was predominantly caused by gene 
family expansion. Kolesnikova et  al. (2019) assembled 
the complete mitochondrial genomes of A. borealis, A. 
gallica, A. sinapina, and A. solidipes and found a high 
degree of variation in size, gene content and genomic 
organization among these phylogenetically closely 
related species. Recently, the first chromosome-level 
Armillaria genome assembly became available, reveal-
ing genome-wide recombination in the genome of A. 
ostoyae (Heinzelmann et al. 2020).

Sequenced Armillaria species originate primarily in 
the Northern Hemisphere. The genome of only one 
species from the Southern Hemisphere, A. fuscipes 
from South Africa, has so far been published (Wing-
field et  al. 2016a, b). It is known that species from 
the Northern Hemisphere, Australasia together with 
Southern America, and Africa, respectively, reside in 
distinct monophyletic lineages (Coetzee et  al. 2011; 
Koch et  al. 2017). Genomes of species in these geo-
graphic locations may, therefore, have followed very 
different evolutionary pathways. Within the African 
clade, Coetzee et  al. (2005) identified two lineages, 
referred to as A. fuscipes and African Group B. Here, 
we report the genome of an Armillaria isolate belong-
ing to African Group B (sensu Coetzee et  al. 2005), 
sequenced using both long- and short-read technolo-
gies. This genome expands the sequence resources for 
Armillaria species from the Southern Hemisphere and 
Africa.

Sequenced strains
Zimbabwe: Stapelford, Manicaland isolated from Brach-
ystegia utilis, 2001, E. Mwenje (culture CMW4456; PREM 
63337—dried culture).

Nucleotide sequence accession number
The Whole Genome Shotgun project of the Armillaria 
sp. genome has been deposited at DDBJ/ENA/GenBank 
under the accession JANDKJ000000000. The version 
described in this paper is version JANDKJ010000000.

Materials and methods
The culture of isolate CMW4456 were grown and main-
tained in MYA (1.5% Malt extract, 0.2% Yeast extract, 
1.5% Agar) at 24  °C in the dark for 4  weeks. DNA was 
extracted from the harvested mycelia using the method 
described by Duong et al. (2013). PacBio sequencing was 
conducted on the Sequel IIe system using the circular 
consensus sequencing (CCS) mode at Inqaba Biotechni-
cal Industries (Pty) Ltd. (Pretoria, South Africa).

For short read sequencing on the Illumina HiSeq plat-
form, genomic DNA was extracted from cultures grown 
in MY  broth (1.5% Malt extract, 0.2% Yeast extract) for 
six weeks at 24  °C in the dark. Harvested cultures were 
kept at −  80  °C, followed by lyophilization. DNA was 
extracted with the Qiagen DNEasy Plant Pro Kit (50) Cat. 
No. 69204 (Qiagen, Sandton, South Africa) following the 
manufacturer’s instructions. Illumina paired-end library 

Table 1  Genome information for the published Armillaria species in comparison to Armillaria African Clade B isolate CMW4456

N/A Not available

Species Strain Number 
of 
scaffolds

Assembly 
size (Mbp)

Number of predicted 
protein coding genes

GC content (%) Origin References

Armillaria altimontana 
(NABS X)

837–10 100 73.74 19,326 47.8 USA Caballero et al. (2022)

Armillaria borealis AB13-TR4-IP16 44,365 66.59 21,969 N/A Russia Akulova et al. (2020)

Armillaria cepistipes B5 182 75.52 23,461 47.6 Italy Sipos et al. (2017)

Armillaria fuscipes CMW2740 24,403 52.98 14,515 N/A South Africa Wingfield et al. (2016a, b)

Armillaria gallica Ar21-2 319 85.34 25,704 47.5 USA Sipos et al. (2017)

Armillaria gallica 012 m 63 87.31 26,261 47.4 China Zhan et al. (2020)

Armillaria mellea DSM 3731 4,377 58.36 14,473 49.1 France Collins et al. (2013)

Armillaria ostoyae C18/9 106 60.11 22,705 48.3 Switzerland Sipos et al. (2017)

Armillaria solidipes C28-4 229 58.01 20,811 48.4 USA Sipos et al. (2017)

Armillaria solidipes (form 
A. ostoyae)

ID001 72 55.74 16,357 48.3 USA Caballero et al. (2022)

Armillaria African Clade 
B sp.

CMW4456 840 54.95 13,600 46.5 Zimbabwe Described here
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preparation and whole-genome sequencing was done 
with an insert size of 350 bp and read-length of 150 bp at 
Macrogen.

Trimmomatic v. 0.38 (Bolger et  al. 2014) was used to 
trim adapter sequences and low-quality ends of the Illu-
mina reads (ILLUMINACLIP, TruSeq3-PE.fa:2:30:10:8; 
LEADING, 3; TRAILING, 3; MINLEN, 30).

The PacBio HiFi reads were assembled with CLC 
Genomics Workbench v 22.0.1 (QIAGEN, Aarhus). The 
assembly was subsequently polished with the trimmed 
Illumina HiSeq reads, using Pilon v. 1.23 (Walker et  al. 
2014). Genome completeness was evaluated with Bench-
marking Universal Single-Copy Orthologs (BUSCO) v. 
5.3.2, using the agaricales_odb10 lineage dataset (Manni 
et  al. 2021). AUGUSTUS v. 3.4.0 (Keller et  al. 2011; 
Stanke et al. 2008; Stanke and Waack 2003) was used to 
predict protein coding genes, applying gene models of 
the closely related species, Coprinus cinereus. QUAST v 
5.0.2 (Gurevich et al. 2013) was used to evaluate metrics, 
including contig number, total length, GC content, and 
N50 for the genome assemblies. BUSCO, AUGUSTUS 
and QUAST were run using the Galaxy platform (Afgan 
et al. 2018; The Galaxy Community 2022) (https://​usega​
laxy.​eu/). Armillaria ostoyae strain C18/9 genome (Sipos 
et  al. 2017) with accession number FUEG00000000.1 
was used as the reference genome for genome quality 
evaluation.

The identity of the Armillaria African Clade B isolate 
CMW4456 for which a genome was sequenced was con-
firmed based on phylogenetic grouping with published 
DNA sequences. DNA sequences from the internal tran-
scribed spacer region (ITS) and the translation elonga-
tion factor one alpha (tef1-α) were extracted from the 
genome. Since few tef1-α sequences from African iso-
lates are available in databases, the tef1-α sequence was 
compared to sequences on GenBank using BLASTn. The 
ITS sequence was included in the data matrix of Coet-
zee et al. (2005) and aligned using the online version of 
MAFFT v. 7. (Katoh et al. 2019). The TrN + G nucleotide 
substitution model was determined as best fitting the 
sequence alignment, using jModelTest and the Akaike 
Information Criterion (Darriba et al. 2012; Guindon and 
Gascuel 2003), and incorporated in the maximum likeli-
hood analyses. A maximum likelihood phylogenetic tree 
was constructed using PHYML v. 3.0 (Guindon et  al. 
2010), applying 1000 bootstrap replicates. The tree was 
rooted with sequences of A. hinnulea.

Results and discussion
The 4 PacBio read length ranged between 289 and 15627 
bases. The 2 × 151 bp Illumina HiSeq paired-end librar-
ies yielded a total of 14,927,540,182 reads, amounting to 
98,857,882 nucleotides. The PacBio and Illumina reads 

were assembled into 840 contigs with a total assembly 
size of 54.95 Mbp. All contigs were longer than 1000 bp, 
with the largest contig being 1,463,441 bp. The N50 and 
N75 values were 128,967 bp and 45,059 bp, respectively. 
The L50 and L75 values were 85 and 270 contigs, respec-
tively. The GC content of the assembled genome was 
46.53%. Genome completeness was estimated to be 98%, 
corresponding to 96.8% complete and single-copy BUS-
COs, 1.2% complete and duplicated BUSCOs, 0.1% frag-
mented BUSCOs, and 1.9% missing BUSCOs (n = 3870). 
AUGUSTUS predicted 13,600 protein coding genes.

The genome statistics of the sequenced Armillaria 
strain correlated with that reported for the genomes of 
other species in the genus (Table 1). The assembly size fell 
within the range of 53.00–73.74 Mbp, though the num-
ber of predicted protein coding genes (13,600 genes) was 
somewhat lower than the 14,473–26,261 genes reported 
in the assembled genomes of other species of Armillaria. 
The GC contents of the genomes of other Armillaria spp. 
(47.4–49.1%) are similar to the GC content of 46.53% 
reported here.

The sequenced genome of Armillaria sp. strain 
CMW4456 grouped with other strains of the African 
Armillaria Clade B from Cameroon, Zambia and Zimba-
bwe (Coetzee et al. 2005), confirming its identity (Fig. 1). 
The tef1-α sequence from the genome was identical to 
the tef1-α sequence of CMW4456 on GenBank (acces-
sion number DQ435617.1). This genome sequence will 
serve as a useful resource for investigating the biology, 
chemistry, and pathogenicity of Armillaria species from 
Africa in comparison to those from other continents.

Authors: Deborah L. Narh Mensah1, Brenda D. 
Wingfield1, Mkhululi Maphosa1, Tuan A. Duong1, and 

Martin P. A. Coetzee1,*.
*Contact: martin.coetzee@fabi.up.ac.za.

IMA GENOME‑F 17B
Draft genome sequence of Ceratocystis colombiana
Introduction
The ascomycete fungal genus Ceratocystis consists of 
over 40 species, many of which are important pathogens 
of forestry and agricultural tree crops worldwide (de 
Beer et al. 2014). While many species of Ceratocystis only 
cause problems in their regional distribution, some man-
aged to spread across continents and pose considerable 
threats to the health of forestry and plantations world-
wide (Engelbrecht et  al. 2004; Liu et  al. 2021).The most 
notable pathogens of the genus include C. fimbriata that 
causes black root of sweet potatoes (Halsted 1890), C. 
platani that causes cankers and wilt disease of plane trees 
(Tsopelas et  al. 2017), C. eucalypticola that causes vas-
cular wilt in Eucalyptus (Roux et al. 2020), and C. man-
ginecans that causes vascular wilt disease in Acacia and 

https://usegalaxy.eu/
https://usegalaxy.eu/
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Mango trees (Tarigan et al. 2011; Al Adawi et al. 2013). 
It also includes the recently described C. huliohia and C. 
lukuohia associated with the rapid death of native ˋōhiˋa 
lehua (Metrosideros polymorpha) in Hawai`i (Barnes 
et al. 2018).

The genomic resources for studying Ceratocystis spe-
cies have been increasing in recent years thanks to the 
increasing affordability in sequencing fungal genomes 
with next generation sequencing technologies. There 
are a number of genome sequences available for spe-
cies of Ceratocystis from various hosts including C. 
fimbriata from sweet potato (Wilken et  al. 2013), C. 
manginecans from Acacia mangium (van der Nest et al. 
2014b), C. eucalypticola from Eucalyptus (Wingfield 
et  al. 2015a, b), C. albifundus from Acacia mearnsii 
(van der Nest et al. 2014a, 2019), C. harringtonii from 
poplar (Wingfield et  al. 2016a, b), C. smalleyi from 
hickory (Wingfield et  al. 2018), and C. cacaofunesta 
from cacao (Molano et al. 2018). In this study, we report 
the genome sequence of an isolate of C. colombiana 
from Coffea arabica in Colombia. This species is known 

from coffee, citrus, and Schizolobium parahyba and but 
so far is only known from Colombia (Van Wyk et  al. 
2010). Pathogenicity assays showed that that C. colom-
biana can cause disease on Coffea arabica and hence it 
could pose a serious threat to the coffee industry in the 
region and the availability of genome sequence data will 
help in understanding its biology and pathogenicity.

Sequenced strain
Colombia: Valle del Cauca, isol. ex Coffea arabica, 
2000, M. Marin (CMW5751; CBS 121792; PREM 
59434—dried culture).

Nucleotide sequence accession number
The Ceratocystis colombiana genomic sequence data 
has been deposited at DDBJ/EMBL/GenBank under the 
accession JAOSLS000000000. The version described in 
this paper is version JAOSLS010000000.

Fig. 1  Maximum likelihood tree based on ITS sequence data, confirming the identity of the Armillaria African Clade B sp. strain CMW4456 
sequenced in this study (highlighted in bold). Bootstrap values above 80% are shown above the nodes. The scale bar represents nucleotide 
substitutions per site
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Materials and methods
A single spore culture of C. colombiana CMW5751 
was grown on malt extract broth (2% malt extract; 0.5% 
yeast extract) for 3 d at room temperature, after which 
the mycelium was harvested and freeze-dried. DNA was 
extracted from freeze-dried mycelium using the method 
described in Duong et al. (2013). Whole genome sequenc-
ing was by Macrogen (Seoul, South Korea) where a 
paired-end library was constructed using the TruSeq 
PCR free protocol and sequenced on the HiSeq 2500 
platform to obtain 251 bp paired-end reads. The illumina 
data were trimmed using Trimmomatic v.0.38.1 (Bolger 
et al. 2014) and the genome was assembled using SPAdes 
v.3.14.0 (Bankevich et  al. 2012). The resulting assembled 
scaffolds were filtered based on k-mer coverage (≥ 20% 
of the medium coverage) and size (≥ 500  bp). Assembly 
completeness was assessed using BUSCO v.4.1.4 (Simão 
et  al. 2015) using the sordariomycetes_odb10 dataset. 
The number of protein coding gene models was estimated 
using AUGUSTUS v.3.2.3 (Keller et  al. 2011) using the 
pre-defined species model for Fusarium graminearum. To 
validate the identity of the sequenced isolate, ITS, βT and 
EF1-α gene regions were extracted from the assembly and 
a maximum likelihood phylogeny was constructed using 
the reference sequences of Van Wyk et al. (2010).

Results and discussion
A total of ~ 2,. million paired-end reads were obtained from 
Illumina paired-end sequencing, of which ~ 1.96 million 
pairs remained after trimming. De novo genome assem-
bly with SPAdes followed by filtering steps resulted in a 
final assembly with 973 scaffolds and a N50 of 80.73 Kb. 
The genome assembly of C. colombiana is 31.19 Mb with 
a mean GC of 47.93%. The genome size of this species 
is in the same range as for other species of Ceratocystis 
sequenced to date; 27.31  Mb for C. smalleyii (Wingfield 
et  al. 2018) and 32.15  Mb for C. manginecans (Fourie 
et al. 2020). Phylogenetic analysis using the extracted gene 
regions (ITS, βT and EF1-α) confirmed that the sequenced 
isolate was C. colombiana (Fig.  2), residing in the same 
clade with isolates originally described by Van Wyk et al. 
(2010). BUSCO analysis of the genome assembly using the 
sordariomycetes_odb10 dataset yielded a complete score 
of 94.6% and Augustus predicted 7358 protein coding 
genes encoded by the genome. The genome of C. colom-
biana from this study, together with those available for 
the genus and the larger Ceratocystidaceae will facilitate 
comparative genomics studies to understand evolutionary, 
pathogenicity and host adaptation of these economically 
important group of pathogens.

Authors: Tuan A. Duong* and Brenda D. Wingfield.
*Contact: Tuan.duong@fabi.up.ac.za.

IMA GENOME‑F 17C
Long‑read genome assembly of the maize grey leaf spot 
pathogen Cercospora zeina gives insight into its genomic 
architecture
Introduction
Grey leaf spot (GLS) is a foliar disease of maize that is 
widespread in sub-Saharan Africa (Meisel et  al. 2009; 
Nsibo et  al. 2021). The causal agents of GLS are two 
closely related species of Mycosphaerellales (Doth-
ideomycetes), Cercospora zeina and Cercospora zeae-
maydis (Crous et al. 2006). Cercospora zeina has a wide 
geographical distribution including the USA, Brazil, 
and China (Wang et  al. 1998; Liu and Xu 2013; Neves 
et  al. 2015). It is the causal agent of GLS in Africa, as 
DNA analysis confirmed that only C. zeina was present 
amongst 964 isolates from Kenya, Uganda, Zambia, Zim-
babwe, and South Africa (Nsibo et al. 2021). The causal 
agent of GLS in Africa was named as C. zeae-maydis 
prior to splitting the GLS causal agent into two species, 
and the use of a reliable DNA diagnostic to distinguish it 
from C. zeina (Ward et al. 1999; Crous et al. 2006; Swart 
et al. 2017).

GLS caused by C. zeina results in great economic 
losses. Severe blighting of leaves in GLS susceptible 
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Fig. 2  Phylogenetic tree generated from maximum likelihood 
analysis of the combined dataset ITS, βT and EF1-α gene regions. 
The sequences were extracted from the genome assembly of the 
sequenced isolate (bold type) and analysed together with reference 
sequences from Van Wyk et al. (2010). The C. colombiana (CMW5751) 
sequenced in this study resided in the same clade with original C. 
colombiana isolates described by Van Wyk et al. (2010)
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maize genotypes reduces the supply of photosynthate 
during grain filling, with yield losses of 40–67% reported 
in South African field trials (Ward et  al. 1999). A Zam-
bian strain of C. zeina (CMW25467) has been used as an 
experimental model for studying infection of the maize 
host and the molecular biology of the pathogen (Meisel 
et al. 2009; Korsman et al. 2012; Swart et al. 2017; Meyer 
et al. 2017). A draft genome sequence of this strain was 
previously generated using short read data (Wingfield 
et  al. 2017). However, this assembly was highly frag-
mented which limits its use in studying genomic archi-
tecture and evolutionary processes. To improve the 
genome assembly for the same strain (CMW25467) we 
employed long-read sequencing technology, since this 
approach can generate contiguous assemblies that span 
entire regions of repetitive DNA. The improved genome 
assembly will help to gain insight into the genomic archi-
tecture, proximity of coding genes to mobile elements, 
and serve as a foundation for syntenic comparisons with 
related phytopathogens.

Sequenced strain
Zambia: Central region (Mkushi): isol. ex Zea mays 
(maize), March 2007, F.J. Kloppers & B. Meisel 
(CMW25467, MUCL 51677, CBS142763, PREM 61898—
dried culture).

Nucleotide sequence accession number
This Whole Genome Shotgun project  has been depos-
ited at DDBJ/ENA/GenBank under the accession number 
MVDW00000000. The version described in this paper is 
version MVDW02000000. Biosample SAMN06067857; 
Bioproject PRJNA355276.

Materials and methods
Cercospora zeina strain CMW25467 (Meisel et al. 2009) 
was recovered from a glycerol stock stored at −  80  °C 
and maintained on V8 media. Greenhouse-grown maize 
B73 plants were inoculated with the strain. Once GLS 
lesions formed, single spore isolation was made to obtain 
a culture used for DNA extraction and sequencing. The 
gDNA was extracted using the CTAB protocol (Allen 
et  al. 2006). The quality and quantity of the extracted 
DNA (3.2 μg) were assessed using 1% agarose gel electro-
phoresis and a Qubit 4 fluorometer.

PacBio sequencing was performed using one cell of 
a Single Molecule Real Time (SMRT) sequencer. The 
PacBio raw reads were assembled using the Hierarchi-
cal Genome Assembly Process (HGAP v4) included in 
SMRTLink  v6 (Pacific Biosciences, CA) with default 
parameters. A polished assembly was generated  using 
Arrow, which uses a statistical approach to gener-
ate a consensus sequence from the PacBio reads, as 

implemented in SMRTLink. The depth of coverage 
obtained by realignment of reads on the draft assembly 
was used to filter the assembly: we discarded contigs 
with a depth deviating by more than 1.5X from the aver-
age coverage across all contigs weighted by the contig 
length as in Plissonneau et al. (2016). To further improve 
the PacBio-based  assembly, we used previously gener-
ated  paired-end Illumina reads from the same C. zeina 
strain (Wingfield et  al. 2017). We aligned  the Illumina 
reads to the PacBio assembly using the Burrows-Wheeler 
Alignment (BWA) tool (Li and Durbin 2009), followed 
by one round of polishing with Pilon (Walker et al. 2014) 
with default settings. Statistics related to the assembly 
quality such as the N50 were measured with QUAST v4.4 
(Gurevich et al. 2013). We addressed to which extent the 
PacBio genome assembly comprised complete chromo-
somes. To identify chromosome ends we used the pro-
gramme Bowtie to identify the telomeric repeat CCC​
TAA​ in the final genome assembly (Langmead et  al. 
2009). This repeat motif has been identified in the telom-
eric regions of diverse organisms including plant patho-
genic fungi (Fulnečková et al. 2013; King et al. 2015). We 
considered loci with at least ten times the repeat length 
(including one potential incorrect repeat) as putative 
sub-telomeric regions.

To annotate the genome, RNA-Seq reads from several 
in planta and in vitro sources (GSE99005, GSE94442, 
GSE90705, (Swart et  al. 2017; Meyer et  al. 2017)) were 
mapped onto the genome assembly using HISAT2 v2.1.0 
(Kim et  al. 2015) with the following parameters: --pen-
noncansplice 18, --mp 6,0, --no-softclip, --max-intronlen 
10,000, -t-reorder. The BAM file generated from HISAT 
was filtered to retain only concordant pair alignments 
and then used in the annotation of the genome using 
BRAKER v2.0.6 (Hoff et  al. 2016) with the—fungus 
parameter. Genome assembly and annotation complete-
ness were assessed with BUSCO v3.2.0 using the Asco-
mycota dataset (Simão et al. 2015).

OcculterCut v1.1 (Testa et al. 2016) was used to inves-
tigate whether the C. zeina genome was compartmen-
talized with respect to GC content. This method scans 
along the genome and detects adjacent segments of at 
least 1 kbp that have statistically significant GC content 
differences and are on either side of a position where the 
Jenson-Shannon divergence is maximized (Testa et  al. 
2016).

The species identity of the sequenced strain was veri-
fied by extraction of the translation elongation fac-
tor 1-alpha (TEF) and ITS sequences from the PacBio 
genome assembly, and phylogenetic comparison with 
related fungal species. Phylogenetic analysis was con-
ducted using RAxML by applying the GTR + F0 + G10m 
model (Kozlov et al. 2019). The datasets for TEF and ITS 
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nucleotide sequences were the same as those used to ver-
ify the species identity in the previous version of the C. 
zeina genome (Wingfield et al. 2017), with the exception 
that we used a more closely related outgroup (Pseudocer-
cospora oxalidis) in this study.

Results and discussion
Genome assembly using HGAP v4 resulted in a 41 Mbp 
assembly consisting of 22 contigs of which 17 contigs 
had a mean coverage of 260X. Analysis focused on the 
17 contigs since they corresponded to nuclear genome 
regions with protein-coding genes (Fig.  3; contig names 
shortened from Czeina_xxxxF to xxF in the text). The 
five contigs not included in the set of 17 had either a low 
(< 260X; contigs 16F, 18F, and 20F) or a very high mean 
coverage (> 1000X, contigs 19F and 21F). The assembled 
genome had an N50 of 4 Mbp and an L50 of 5. The long-
est contig was 5,172,692 bp (contig 00F) and the shortest 
contig was 29,391 bp (contig 17F). The telomeric repeated 
motif CCC​TAA​ was present at both ends of three contigs 
(02F, 06F, 08F), indicating that these may represent com-
plete chromosomes (Fig. 3). The telomeric repeated motif 
was also found at one end of twelve other contigs (Fig. 3).

The average GC content of the C. zeina genome was 
found to be 48%.  We next investigated the variation in 
distribution of  GC content  along the genome assem-
bly using the software OcculterCut (Testa et  al. 2016). 

This analysis showed that approximately a third of the 
genome is made up of AT-rich segments (less than 41% 
GC content).

A total of 11,570 gene models were predicted from 
this new genome assembly, which is 1377 more than the 
10,193 gene models predicted from a previously pub-
lished Illumina-based genome assembly  and annota-
tion (Wingfield et  al. 2017). Long-read sequencing with 
PacBio therefore revealed additional gene models that 
would not have been identified in a more fragmented 
assembly. The number of protein-coding genes predicted 
in the newly assembled C. zeina genome was similar to 
that of other Dothideomycetes determined by long-read 
sequencing   such as 10,528 to 12,386 in Zymoseptoria 
species (Feurtey et  al. 2020), 11,257 in Ascochyta rabiei 
(Shah et  al. 2020), and  14,186 in Pyrenochaeta lycoper-
sici (Dal Molin et  al. 2018).  BUSCO analysis indicated 
that the assembly had a completeness score of 97.2% 
with 0.1% duplicated, 1.7% fragmented and 1.1% missing 
genes. The PacBio assembly reported here recovered five 
additional BUSCO genes that were not identified in the 
previous version of the assembly (Wingfield et al. 2017).

The five contigs that we had previously filtered out due 
to high or low coverage were also annotated to deter-
mine their gene content. BLASTN searches of the contigs 
16F and 18F against the nr/nt database (NCBI) revealed 
sequences with similarity to annotated  transposable 

Fig. 3  Cercospora zeina (CMW25467) PacBio genome assembly with positions of microsatellite markers and CCC​TAA​ telomere repeats. The 17 
nuclear contigs with protein coding genes are shown (Czeina_00000F-Czeina00017F). The five additional contigs 16F, 18F, 19F, 20F, 21F are not 
shown (sizes < 30 kbp). The telomere repeats are shown by yellow triangles. Contigs 02F, 06F, 08F had telomere repeats at both ends. The MAT1-1 
gene is located on contig 01F (black bar). Blue bars represent the locations of 13 microsatellite markers (with the CzSSR number below each 
bar) from (Muller et al. 2016). Contig 20F contained CzSSR11 (not shown). Different scale bars (kbp) are shown above contigs Czeina_00000F to 
Czeina_00010F; and contigs Czeina_00011F to Czeina_00017F
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element sequences of C. zeae-maydis. Contig 20F did not 
have any significant BLASTN match other than to a C. 
zeina microsatellite sequence (CzSSR11) (Fig. 3) (Muller 
et al. 2016). Contig 19F had sequence similarity to ribo-
somal RNA sequences including the 18S ribosomal RNA 
gene of various Mycosphaerellales including Cercospora 
sojina, Zymoseptora tritici, and Cladosporium fulvum. 
This suggested that contig 19F contains the ribosomal 
RNA cistron of C. zeina. The BLASTN search of con-
tig 21F resulted in similarity to mitochondrial genome 
sequences of fungi, indicating that this may represent 
part of the C. zeina mitochondrial genome. None of the 
in planta nor in vitro RNA-Seq reads mapped to con-
tigs 16F, 18F or 20F (data not shown). Finally, we also 
conducted an ab initio gene prediction of the sequences 
of  the three contigs using AUGUSTUS, which did not 
identify additonal coding sequences. We conclude  that 
the additional  contigs are  largely made up of repetitive 
sequences. However, further repeat element annotations 
are needed to verify this, and to identify the type of ele-
ments that they putatively encode.

The availability of the improved C. zeina assembly 
allowed us to locate the positions of microsatellites devel-
oped for population genetics studies (Muller et al. 2016) 
to determine whether linkage disequilibrium could affect 
their use in future. Previously, the sequences of the C. 
zeina CMW25467 alleles for 14 micro satellite mark-
ers had been determined by Sanger sequencing (NCBI 
accessions KP015832-42, KP015844, KP015846-47) (Mul-
ler et al. 2016). We located these on the C. zeina PacBio 
assembly using BLASTN, which showed that most of 
them were on different contigs or spaced more than 
1  Mbp apart, except for CzSSR06 and CzSSR08 which 
were 200  kbp apart (Fig.  3). That most of these markers 
are not closely linked corroborates their usefulness where 
they have been used for population genetics studies of 
C. zeina isolates from East and southern Africa, and for 
future studies (Muller et al. 2016; Nsibo et al. 2019, 2021). 
The genome assembly from long-read sequencing deter-
mined in this study (MVDW02) was confirmed to be 
derived from C.  zeina. This was shown by extraction of 
the sequences of elongation factor 1-alpha (TEF1) and ITS 
from the assembled genome sequence, followed by phylo-
genetic analysis with a dataset of these genes from related 
fungi. The phylogenetic tree showed that the source of 
the long-read assembly clustered with the same C. zeina 
strain (CMW25467) and other C. zeina strains, and that 
it was distinct from C. zeae-maydis and other Cercospora 
species, with strong bootstrap support (Fig. 4).

Authors: E.N.K. Kabwe, T. Welgemoed, T.A. Duong, L. 
Potgieter, A. Feurtey, D.L. Nsibo, E.H. Stukenbrock, and 

D.K. Berger*

*Contact: dave.berger@fabi.up.ac.za.

IMA GENOME‑F 17D
Draft genome sequence of Elsinoë necatrix: the causal 
agent of an emerging new and serious Eucalyptus foliar 
disease
Introduction
Elsinoë (Elsinoaceae) was introduced by Raciborski 
(1900) to accommodate a fungus that causes scab-like 
lesions on plant tissue. Members of these necrotrophic 
fungal pathogens are globally distributed and infecting 
approximately 70 hosts including important forestry, 
agricultural and horticultural crops as well as ornamental 
plants (Fan et  al. 2017; Marin-Felix et  al. 2019). Impor-
tant diseases include the citrus scab pathogens Elsinoë 
fawcettii and E. australis (Chung 2011), the causal agent 
of grapevine spot anthracnose E. ampelina (Li et  al. 
2021), and the recently described E. necatrix that causes 
a devastating scab and shoot malformation disease on 
plantation-grown Eucalyptus (Pham et al. 2021).

Eucalyptus scab and shoot malformation was first 
reported in North Sumatra, Indonesia, in 2014 (Pham 
et al. 2021). The disease is characterized by black necrotic 
spots that first emerge on young leaves and petioles, 
which become scab‐like as the lesions age. Infected trees 
respond to infection by producing shoots with small 
leaves that commonly appear feathered. Severely affected 
Eucalyptus clones usually die after a number of succes-
sive infection cycles, generally over a period of two to 
three years. The disease has become prevalent across a 
large area of planted Eucalyptus in the region, resulting 
in significant damage (Pham et al. 2021).

Genome sequences are currently available for six eco-
nomically important species of Elsinoë. These include 
E. ampelina (Haridas et al. 2020; Li et al. 2020), E. ara-
chidis (Jiao et al. 2021; Su et al. 2022), E. australis (Shan-
mugam et al. 2020, Zhao et al. 2020), E. batatas (Zhang 
et  al. 2022), E. fawcettii (Shanmugam et  al. 2020; Jef-
fress et  al. 2020) and E. murrayae (NCBI; https://​www.​
ncbi.​nlm.​nih.​gov). Elsinoë necatrix is amongst the more 
destructive of these pathogens and consequently a threat 
to commercial forestry in Asia and globally. The availabil-
ity of its genome sequence will contribute to compara-
tive genomics studies aimed at further understanding the 
biology of this important but relatively unknown group 
of pathogens.

Sequenced strain
Indonesia: North Sumatra: symptomatic leaf of Euca-
lyptus sp., 2020, N.Q. Pham (ex-holotype culture 
CMW56134 = CBS 147439; PREM 63209—holotype).

Sequence accession numbers
The genome sequence of Elsinoë necatrix (CMW56134) 
has been deposited in DDBJ/EMBL/GenBank databases 

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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under the accession number  JANZYH000000000. The 
version described in this paper is JANZYH010000000.

Materials and methods
Genomic DNA was extracted from freeze-dried 5  day-
old mycelium grown in malt yeast broth (2% malt extract, 
0.5% yeast extract; Biolab, Midrand, South Africa) fol-
lowing the method described by Duong et  al. (2013). 
Nanopore sequencing was conducted using the MinION 
sequencing device. The sequencing library was prepared 
using the Genomic DNA by Ligation (SQK-LSK109) 
protocol. The library was loaded on a MinION flow 
cell (R10.3) and sequencing was run for 48 h. Base call-
ing was conducted using ONT Guppy base calling soft-
ware v. 4.0.14 (https://​commu​nity.​nanop​orete​ch.​com). 
Porechop v. 0.2.1 (https://​github.​com/​rrwick/​Porec​hop) 
was used to remove adapters from the Nanopore reads. 
Illumina sequencing was carried out by Macrogen I 

(Seoul, South  Korea), where the paired-end library was 
constructed and sequenced on NovaSeq 6000 Sequenc-
ing System to obtain 151 bp paired-end reads. The qual-
ity of the data obtained was assessed using the software 
FastQC v. 0.11.5 (Afgan et al. 2016). Trimmomatic v. 0.38 
(Bolger et al. 2014) was used to remove poor quality data 
and the remaining Illumina adapters.

The genome was assembled with Nanopore data using 
Flye v. 2.7 (Kolmogorov et  al.  2019) followed by polish-
ing with raw nanopore reads using Racon v. 1.4.13 (Vaser 
et  al. 2017) and Medaka v 1.0.3 (https://​github.​com/​
nanop​orete​ch/​medaka). To further improve the accu-
racy of the Nanopore assembly, two rounds of polishing 
with Illumina data were carried out using Pilon (Walker 
et al. 2014), where trimmed Illumina reads were aligned 
to the long-read contigs to generate a bam file used as 
input to polish the assembly. Protein coding gene models 
were annotated using the fungal version of GeneMark-ES 

Fig. 4  Phylogenetic tree generated to verify the phylogenetic relationship of the Cercospora zeina isolate sequenced in this study (MVDW02 
indicated in red). Maximum likelihood analysis was performed on a concatenated dataset of translation elongation factor 1-alpha (TEF1) and ITS 
sequences, with percentage bootstrap (100) values shown. The outgroup was based on Pseudocercospora oxalidis sequences (TEF1: GU384467.1) 
and (ITS: GU269756.1). The branch length represents the mean number of expected substitutions per site. Fungal species and strain names are 
shown. Accession numbers for sequences can be found in Wingfield et al. 2017, where the previous short-read assembly (named MVDW01 in this 
Figure) was reported

https://community.nanoporetech.com
https://github.com/rrwick/Porechop
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
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(Ter-Hovhannisyan et  al. 2008). The assembled genome 
completeness was evaluated using BUSCO v. 5.1.2 by 
using the Dothideomycetes dataset (Manni et al. 2021).

To validate the identity of the isolate, the internal 
transcribed spacer (ITS) region, the nuclear large subu-
nit (LSU), part of the DNA-directed RNA polymerase II 
second largest subunit (RPB2) and the partial translation 
elongation factor 1-α gene (TEF1) regions were extracted 
from the assembly and analyzed together with refer-
ences sequences of E. necatrix and other Elsinoë spe-
cies obtained from GenBank. The sequence data set was 
aligned using the online version of MAFFT v. 7 (http://​
mafft.​cbrc.​jp/​align​ment/​server/), (Katoh and Standley 
2013). Phylogenetic analysis using maximum likelihood 
(ML) was performed with RaxML v. 8.2.4 on the CIPRES 
Science Gateway v. 3.3 (Stamatakis 2014) with GTR sub-
stitution model and 1,000 rapid bootstraps.

Results and discussion
Nanopore sequencing generated 5.66 Gb data with read 
N50 value of 2.07  kb. Illumina sequencing generated 
22.8 million paired-end 151  bp reads. The final assem-
bly of E. necatrix (isolate CMW56134) consisted of 69 
contigs, with the N50 of 0.73 Mb and L50 of 10. Phylo-
genetic analysis of four regions (ITS, LSU, RPB2, TEF1) 
confirmed the taxonomic identity of the isolate as E. nec-
atrix (Fig. 5). The assembled genome of E. necatrix was 
approximately 24.07  Mb with a GC content of 51.59%. 
The BUSCO completeness of the genome was estimated 
to be 93.42%: of the 3786 Dothideomycetes BUSCO 
groups searched, 53 BUSCO orthologs were reported to 
be fragmented, and 196 BUSCO groups were missing. 
GeneMark-ES predicted 9180 protein coding gene mod-
els in the assembled genome. The genome size and gene 

number for E. necatrix is relatively similar to that of other 
Elsinoë spp. (Table 1).

The draft genome sequence of E. necatrix generated 
here will facilitate future research regarding the biol-
ogy and pathogenicity of this fungus. In particular, the 
genome sequence will be useful for developing molecular 
markers for population genetic studies to determine its 
origin and pathways of movement. This will have impli-
cations for the management of the disease and contribute 
towards a better understanding of the growing disease 
threats (Wingfield et  al. 2013, 2015a, b) to Eucalyptus 
plantation forestry globally.

Authors: Pham NQ, Duong TA*, Wingfield BD, Barnes 
I, Durán A, and Wingfield MJ.

*Contact: Tuan.Duong@fabi.up.ac.za.

IMA GENOME‑F 17E
Short‑read genome assemblies and annotations of four 
Pyrenophora teres isolates collected from barley grass
Introduction
Pyrenophora teres (syn. Drechslera teres) is the causative 
fungus of net blotch disease in barley (Hordeum vulgare). 
Yield loss due to net blotch in susceptible barley cultivars 
can range from 10 to 70% (Jayasena et al. 2007; Wallwork 
et  al. 2016) making P. teres one of the most important 
fungal pathogens of the barley industry world-wide. Pyr-
enophora teres exists as two forms; Pyrenophora teres f. 
teres (Pitt)   and Pyrenophora teres f. maculata (Ptm), 
causing net-form net blotch and spot-form net blotch 
in barley, respectively (Liu et  al. 2011). Leaf symptoms 
due to Pyrenophora teres f. teres appear as dark-brown 
net-like transverse and longitudinal necrotic striations, 
while symptoms due to P. teres f. maculata develop as 

Table 1  Genome assembly features of Elsinoe spp.

Species Strain Accession number Genome size 
(Mb)

Gene number References

Elsinoe ampelina YL-1 SMYM00000000 28.30 8057 Li et al. (2020)

CECT 201119 JAAEIW000000000 28.27 10,207 Haridas et al. (2020)

Elsinoe arachidis LNFT-H01 JAAPAX000000000 33.18 9174 Jiao et al. (2021)

LY-HS-1 GWHBFXO00000000 32.44 9435 Su et al. (2022)

Elsinoe australis Ea-1 SWCS00000000 23.79 9002 Shanmugam et al. (2020)

NL1 NHZQ00000000 23.34 9223 Zhao et al. (2020)

Elsinoe batatas CRI-CJ2 JAESVG000000000 26.49 9521 Zhang et al. (2022)

Elsinoe fawcettii SM16-1 VAAB00000000 26.65 10,340 Shanmugam et al. (2020)

DAR-70024 SWCR00000000 26.32 9930 Shanmugam et al. (2020)

BRIP 53147a SDJM00000000 26.01 10,080 Jeffress et al. (2020)

Elsinoe murrayae CQ-2017a NKHZ00000000 20.72 8281 NCBI

Elsinoe necatrix CMW56134 JANZYH000000000 24.07 9180 This study

http://mafft.cbrc.jp/alignment/server/
http://mafft.cbrc.jp/alignment/server/
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dark-brown circular to elliptic lesions on susceptible bar-
ley cultivars (Smedegård-Petersen 1971).

In addition to barley, P. teres can be found on weeds 
such as barley grass (Hordeum leporinum, subspecies of 
H. murinum) and other Gramineae crops such as wheat 

(Triticum aestivum) and oat (Avena sativa) (Shipton 
1966; McLean et  al. 2009; Khan and Boyd 1969). Even 
though P. teres has been reported to infect both cultivated 
and weed-like barley, host specificity of the pathogen 
is controversial (Linde and Smith 2019). Some studies 

Elsinoe necatrix CMW 56134 

Elsinoe necatrix CMW 56134T

Elsinoe eucalypticola CBS 124765T

Elsinoe eelemani DAR 83016T

Elsinoe fawcettii CBS 139.25T

Elsinoe fawcettii CBS 233.64

Elsinoe fawcettii CBS 232.64

Elsinoe fawcettii CBS 231.64

Elsinoe ampelina CBS 208.25T

Elsinoe arachidis CBS 511.50T

Elsinoe arachidis CPC 18533

Elsinoe arachidis CPC 18529

Elsinoe australis CBS 314.32T

Elsinoe australis CBS 229.64

Elsinoe australis CBS 230.64

Elsinoe murrayae NL3

Elsinoe murrayae NL1

Elsinoe murrayae NL2

Myriangium hispanicum CBS 247.33

100
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100

100
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100

100

100
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0.020

Elsinoe necatrix CMW 56129

Fig. 5  Maximum Likelihood tree based on ITS, LSU, RPB2 and TEF1 sequences for Elsinoë spp. Bootstrap values ≥ 90% for ML analyses are indicated 
at the nodes. Isolates representing ex-type material are marked with “T”. Myriangium hispanicum (CBS 247.33) represents the outgroup. The genome 
sequenced in this study, of which the sequences were extracted from the assembly, is indicated in blue
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reported that P. teres can infect host plant species belong-
ing to the Hordeum family without being specific to any 
species in the family (Bakke 1912; Braverman 1960; Ken-
neth 1962), while other studies reported strict host speci-
ficity of P. teres to its host species (Khan 1973; Linde and 
Smith 2019). Either way, ancillary hosts like barley grass 
growing alongside cultivated barley can act as a source of 
inoculum for P. teres (MacNish 1964; Shipton 1966) and 
may play an important role in the evolution of this patho-
gen (Linde et al. 2016). Whole genome sequence data for 
P. teres isolates associated with weed-like barley hosts 
will contribute to better the understanding of the molec-
ular mechanisms underlying its host association.

Sequenced strains
Australia: Victoria: Curyo, isolated from Hordeum 
leporinum, 2014, J. Fanning [Ptm14015] (BRIP  71574); 
Joel South, isolated from Hordeum leporinum, 2012, M. 
Mclean [Ptt12013] (BRIP  71573).Queensland: Yelar-
bon, isolated from Hordeum leporinum, 2010, R. Fowler 
HRS10128 (BRIP  71572). Western Australia: Mt Barker, 
isolated from Hordeum leporinum, 1995, Rob Loughman 
[SNB172] (BRIP 74832).

Nucleotide sequence accession number
This whole-genome shotgun project was deposited in 
the NCBI GenBank database under accession numbers 
JAMGBO000000000 (Ptm14015), JAMGBN000000000 
(HRS10128),  JAMGBM000000000  (Ptt12013)  and 
JAMGBL000000000 (SNB172) [BioProject: PRJNA838266 
and  BioSamples:  SAMN28416484 (Ptm14015), SAMN2
8416485  (HRS10128),  SAMN28416486 (Ptt12013) and 
SAMN28416487 (SNB172)]. This paper describes the first 
versions of the four genomes.

Materials and methods
Genomic DNA of four barley grass isolates, Ptm14015, 
HRS10128, Ptt12013 and SNB172, was extracted from 
14 to 20 day old fungal mycelium grown on half strength 
potato dextrose agar (PDA) medium [20  g/litre; Biolab 
Merck Darmstadt, Germany] using a Wizard® Genomic 
DNA Purification kit (Promega, Sydney, Australia) as per 
the manufacturer’s protocol. The integrity of the DNA 
was assessed under ultraviolet light (Fusion FX, VIL-
BER, Marne-la-Vallée, France) after agarose gel electro-
phoresis. DNA quantity and quality was measured with 
a NanoDropTC 2000/2000c and a NanoPhotometer 
P300 spectrophotometer (IMPLEN, Munich, Germany). 
The shotgun DNA libraries of Ptm14015, HRS10128 
and Ptt12013 were constructed by Australian Genome 

Research Facility (AGRF, Melbourne) with 125  bp pair-
end reads using TruSeq Nano library preparation kit. The 
shotgun DNA libraries of SNB172 was constructed with 
Nextera DNA XT library preparation kit by Macrogen 
(Seoul, South Korea) as per the Illumina short read pro-
tocol and sequenced with 150 bp pair-end reads on Illu-
mina HiSeq 2000. The sequence quality of the pair-end 
reads of four genomes were examined by FastQC v0.11.8 
(Andrews 2010). The adapter sequences of pair-end reads 
were trimmed by Trimmomatic v0.39 (Bolger et al. 2014). 
Sequences shorter than 40 bp and sequences with aver-
age phred score lower than 33 bp were also removed. The 
sequence quality of trimmed sequences was examined 
using FastQC. Trimmed sequences were used to perform 
de novo whole genome assembly with SPAdes v3.15.2 
(Bankevich et  al. 2012) by adjusting k-mer size from 20 
to 40  bp. The quality and the completeness of all four 
genome assemblies were assessed using QUAST v5.0.2 
(Gurevich et  al. 2013) and BUSCO v.4.1.2 (Simão et  al. 
2015) with the fungi_odb10 database.

Repeat elements present in the genome assemblies 
were detected by RepeatModeler v1.0.11 (Smit and Hub-
ley 2008), using Repbase v20.4 library (Bao et  al. 2015) 
and masked using RepeatMasker v4.0.9 (Nishimura 
2000). Gene prediction was conducted using BRAKER2 
v.2.1.6 (Hoff et  al. 2019) genome annotation pipeline, 
using the protein sequences of P. teres f. teres 0–1 (Ell-
wood et al. 2010) as protein evidences to train AUGUS-
TUS (Stanke et al. 2006).

The verification of the sequenced isolates, Ptm14015, 
HRS10128, Ptt12013 and SNB172 as Pyrenophora teres 
was carried out by multi-locus phylogenetic analysis 
(Fig. 6) of four loci; internal transcribed spacers and the 
intervening 5.8S sequence of the nrDNA (ITS), partial 
large subunit of the nrDNA (LSU), partial glyceralde-
hyde-3-phosphate dehydrogenase gene (gapdh), and 
partial DNA-directed RNA polymerase II second largest 
subunit gene (rpb2). The sequences of the four loci of ref-
erence Pyrenophora strains were obtained from Marin-
Felix et al. (2019) and Duong et al. (2021). The sequences 
of the four loci of the isolates in the current study were 
extracted from their respective genome assemblies. Mul-
tiple sequence alignment of each loci was conducted in 
MAFFT v.7.450 (Katoh and Standley 2013). Four multiple 
alignments from the four loci were then concatenated in 
Geneious Prime v.2021.2.2 (Kearse et al. 2012). A maxi-
mum likelihood phylogram of Pyrenophora species was 
derived from the concatenated alignment by RAxML v.8 
(Stamatakis 2014) using the GTR substitution model with 
gamma-distribution rate variation for individual parti-
tions and 1000 bootstraps. Pyrenophora poae was used as 
the outgroup for the phylogram (Duong et al. 2021).
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Results and discussion
Illumina paired end (125 and 150  bp) sequencing of 
Ptm14015, HRS10128, Ptt12013 and SNB172 resulted 
in around 50 million reads each with ~ 100 × coverage 
of the whole genome. The final assemblies of Ptm14015, 
HRS10128, Ptt12013 and SNB172 genomes included 
1295, 956, 1225 and 3384 contigs/scaffolds (≥  1000bp) 
with N50 values of 111.57, 331.43, 109.55 and 348.92 kb, 
respectively. The CG contents of Ptm14015, HRS10128, 
Ptt12013 and SNB172 genomes were 46.71, 46.57, 46.59 
and 47.92% and the largest contig size of each assembly 
was 596.68, 1508.41, 712.94 and 323.58  kb, respectively. 
The BUSCO completeness of the four assemblies ranged 
from 94.5 to 96.3% (Table 1). Out of 3786 total BUSCO 
genes searched, 3564, 3630, 3628 and 3604 BUSCO genes 
were found from the Ptm14015, HRS10128, Ptt12013 and 
SNB172 genomes, respectively (Table 1). The high com-
pleteness of these four genomes confirmed the high qual-
ity of the assemblies.

The compositions of the DNA transposons of the four 
genomes ranges from 1.16 to 2.66% of the total genome. 
The long interspersed nuclear element (LINE) compo-
sition of the genomes ranged from 0.28 to 1.16% and 
the long terminal repeat (LTR) retrotransposon ranged 
from 15.87 to 20.70% of the whole genome. The com-
positions of DNA transposons, LINEs and LTRs in the 
current study were similar to those previously reported 
for P. teres (Duong et  al. 2021; Syme et  al. 2018; Wyatt 
et  al. 2020). The total number of protein-coding genes 

generated using BRAKER2 ranged from 11,038 to 11,314 
among the four P. teres isolates (Table  1), which was 
greater than the 10,051 protein-coding genes reported 
for the Ptt and Ptm hybrid genome (Duong et al. 2021). 
These four genomes are the first published genomes for 
P. teres collected from barley grass (Hordeum leporinum) 
and will be highly valuable for future comparative studies 
of Pyrenophora species.

Authors: Buddhika Amarasinghe Dahanayaka, Barsha 
Poudel, Niloofar Vaghefi, Kiruba Shankari Arun-Chin-

nappa, and Anke Martin.
*Contact: Anke.Martin@usq.edu.au.

IMA GENOME‑F 17F
Draft genome sequences for two isolates of the plant 
pathogen Sclerotinia minor
Introduction
Sclerotinia minor is a fungal pathogen that infects 
numerous plant hosts, including several crop species of 
economic importance (Melzer et  al. 1997). It is closely 
related to the broad host-range pathogen S. sclerotio-
rum (Holst-Jensen et  al. 1998), and these two species 
are often studied together due to their overlapping host 
ranges and similarities in both life cycles and mating sys-
tems (Subbarao 1998; Wu et al. 2008; Chitrampalam et al. 
2013; Chitrampalam and Pryor 2015). Genome data for 
S. minor would be a useful resource for future research 
endeavours that could ultimately assist with managing 
this agricultural pathogen.

Table 1  Genome assembly statistics of the four Pyrenophora teres isolates from barley grass

Ptm14015 HRS10128 Ptt12013 SNB172

Assembly

Total assembly size (Mbp) 42.42 42.99 43.03 41.31

Number of contigs (≥ 1000 bp) 1295 956 1225 3384

N50 (kb) 111.57 331.43 109.55 348.92

Largest contigs (kb) 596.68 1508.41 712.94 323.58

GC-content (%) 46.71 46.57 46.59 47.92

BUSCO analysis

Completeness 94.5 96.3 96.1 95.5

Complete and single-copy BUSCOs 3564 3630 3628 3604

Complete and duplicated BUSCOs 14 14 10 11

Fragmented BUSCOs 28 26 27 40

Missing BUSCOs 180 116 121 131

Repeat annotation

DNA repeat elements (%) 1.16 1.24 1.52 2.66

LINEs (%) 0.28 3.20 0.31 1.16

LTR (%) 18.98 17.83 20.70 15.87

Unclassified (%) 6.26 4.95 5.28 6.88

Simple repeats (%) 0.73 0.66 0.73 0.66

Total gene annotation 11,069 11,038 11,068 11,314



Page 14 of 22Wingfield et al. IMA Fungus           (2022) 13:19 

Limited genomic data is already available for S. minor. 
A high-quality reference genome sequence was pro-
duced for a single isolate isolated from lettuce in the 
Hubei province of China (Yang et  al. 2022). This refer-
ence genome is 39 279 639 bp in length and consists of 24 
scaffolds, with a GC content of 41.91%, which is similar 
to that of S. sclerotiorum (Amselem et  al. 2011). Addi-
tionally, an unassembled genomic dataset generated by 
Illumina HiSeq 2500 sequencing for a single isolate of S. 
minor, isolate SsChi (Curtin University 2019), is available 
on the SRA database of the NCBI platform (Curtin Uni-
versity 2019). This isolate was obtained from common 
chicory (Cichorium intybus) in 1960, and the availability 
of a draft assembly for this isolate would be a useful addi-
tion to the current genomic resources for this pathogen.

In this genome announcement, the sequencing and 
assembly of a draft genome for a single isolate of S. minor 

is presented. This draft assembly is presented together 
with that of the isolate SsChi which is currently unassem-
bled, and both these genomes were submitted to a pub-
lic database. These genomes contribute to the available 
genomic resources for S. minor and other plant patho-
gens in the genus Sclerotinia.

Sequenced strains
Italy: isolated from Lactuca sativa, G. Goidánich (CBS 
339.39, NBRC 6767, PREM 63312-dried culture).

Nucleotide sequence accession number
The Whole Genome Shotgun Project has been deposited 
at DDBJ/ENA/GenBank under the Accession Number 
JAMLGC000000000. The version described in this paper 
is JAMLGC010000000.
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Materials and methods
Sclerotinia minor isolate CBS339.39 was obtained 
from the Westerdijk Fungal Biodiversity Institute and 
maintained on 2% PDA-ST media [20  g/L potato dex-
trose agar (Biolab, Merk, South Africa) supplemented 
with 150  mg/L streptomycin and 100  mg/L thiamine 
(Sigma, Steinheim, Germany)] at 25  °C for the duration 
of the study. For DNA isolation, the isolate was grown 
in a glass bottle containing 15  ml of 2% PDB medium 
(20  g/L potato dextrose broth) on an electronic shaker 
for 1–3  days at 25  °C. Mycelia were harvested by cen-
trifugation in 50 mL centrifuge tubes at 4 °C for 10 min 
at 5000 rpm. The mycelia was freeze-dried before being 
subjected to genomic DNA extraction using a previously 
published method (Murray and Thompson 1980).

Genomic DNA was submitted to Macrogen (South 
Korea) for whole-genome sequencing. A TruSeq Nano 
library preparation was used for library construction 
with a 350  bp insert size. Sequencing was carried out 
on the NovaSeq platform, with target read lengths of 
151  bp. The raw reads were imported as individual for-
ward and reverse libraries into the Galaxy online plat-
form (https://​usega​laxy.​org) (Afgan et al. 2018), and were 
subjected to a FastQC (version: 0.11.8) analysis to assess 
read quality. SPAdes (version: 3.12.0) was used for a de 
novo assembly of the draft genome sequence (Bankevich 
et al. 2012) using single-cell mode, k-mer options of 21, 
33 and 55, and activating the careful correction option 
to minimize the number of short indels and mismatches. 
QUAST (version: 5.0.2) was used to assess the quality of 
the genome assembly and to determine the general statis-
tics of the genomes (including genome size, GC content, 
N50, L50, number of contigs, largest contig size, and the 
average number of mismatches per 100 kbp) (Mikheenko 
et al. 2018). The BUSCO pipeline (version: 5.2.2) imple-
mented in Galaxy was used to perform a quantitative 
assessment of the genome assembly completeness based 
on the fungi_odb10 dataset (Simão et  al. 2015; Manni 
et al. 2021).

For a comparison, a second S. minor genome was also 
assembled. A single pair-end library (accession num-
ber SRX5407461) was obtained from the sequence read 
archive (SRA) database on NCBI (https://​www.​ncbi.​
nlm.​nih.​gov/​sra) (Cochrane et al. 2011). This sequencing 
library was deposited by Curtin University in 2019 using 
the Illumina HiSeq 2500 sequencing platform (Curtin 
University 2019), and was derived from isolate SsChi that 
was isolated by F. Mujica from common chicory (Cicho-
rium intybus) in 1960. The 33,971,728 reads of 125  bp 
average length were used in a stand-alone SPAdes assem-
bly (version: 3.14) using “careful correction” and auto-
mated k-mer selection. The resulting assembly was again 

submitted to QUAST and BUSCO analyses to determine 
genome statistics and completeness, respectively.

To confirm the identity of the two S. minor draft 
genomes presented in this announcement, the partial 
small subunit ribosomal RNA gene, complete internal 
transcribed spacer 1 and 5.8S ribosomal RNA gene, and 
partial internal transcribed spacer 2 (ITS region) were 
extracted from the two assembled genomes (CBS 339.39 
and SsChi) as well as from the LC41 reference genome 
(Yang et al. 2022). The sequences were added to a custom 
dataset of publicly available ITS sequences representing 
known Sclerotinia species, as well as a single sequence 
of Botrytis cinerea as outgroup. The dataset was aligned 
using MUSCLE (Edgar 2004) and curated with Gblocks 
using the Phylogeny.fr server (Castresana 2000; Dereeper 
et al. 2008). The curated dataset was used to construct a 
maximum likelihood tree in CLC Main Workbench (ver-
sion 22.0.1, Qiagen). Additionally, an in-silico PCR ampli-
fication targeting the laccase 2 gene (Lcc2) was conducted 
in the CLC Main Workbench program using the “Find 
Binding Sites and Create Fragments” command. The 
PCR amplification made use of the laccase-specific prim-
ers developed as a diagnostic for S. minor (Abd-Elmagid 

Table 1  The main metrics of the three available genome 
sequences of Sclerotinia minor 

a Isolate sequenced and assembled in this study
b Genome assembled from publicly available genomic data
c Previously published genome sequence (Yang et al. 2022)
d Assembled contigs were scaffolded using a published genome of S. 
sclerotiorum (Derbyshire et al. 2017)
e Coverage was reported for PacBio and MGISEQ-2000 sequencing, respectively

CBS 339.39a SsChib LC41c

General genome statistics

Total genome length (bp) 37,906,295 36,885,191 39,279,639

Number of contigs (≥ 500 bp) 1908 2091 151 contigs / 
24 scaffoldsd

Total length (in con‑
tigs ≥ 500 bp)

35,755,541 35,701,198 39,279,639

Coverage 142x 115x 134–645xe

Largest contig size (bp) 202,369 150,738 4,022,415

GC (%) 41.82 41.80 41.91

N50 39,276 34,541 443,861

L50 276 319 7

Number of N’s per 100 kbp 32.27 36.89 60.86

BUSCO completeness statistics

Overall completeness % 99.5 99.5 95.1

Total BUSCO terms 758 758 758

Single copy terms 754 754 718

Fragmented terms 1 1 3

Missing terms 3 3 34

https://usegalaxy.org
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra


Page 16 of 22Wingfield et al. IMA Fungus           (2022) 13:19 

et al. 2013), and was used to confirm the identity of iso-
late LC41 (Yang et al. 2022).

Results and discussion
Sequencing of the genomic DNA for S. minor strain CBS 
339.39 on the Novaseq platform produced 35,898,334 
reads with an average size of 151  bp. FastQC analysis 
confirmed that all reads were of high quality and were 
subsequently assembled into a draft genome of 37.9 Mb 
consisting of 16,992 contigs, 1908 of which were 500 bp 
or larger (Table 1). In comparison, the sequencing data-
set of isolate SsChi obtained from the SRA archive was 
assembled into a genome of 36.8  Mb, consisting of 
12,079 contigs of which 2091 were larger than 500  bp. 
This sequence was also submitted to the DDBJ/ENA/
GenBank database under the Accession Number JAM-
LFZ000000000, with the specific version described here 
as JAMLFZ010000000. Despite the discrepancy in esti-
mated genome size, both isolates had an identical GC 

content of 41.8% and a BUSCO completeness score of 
99.5% (Table 1).

Although the ITS region does not provide sufficient 
phylogenetic signal to distinguish Sclerotinia species 
(Holst-Jensen et  al. 1998), the maximum likelihood tree 
produced from this region did produce a single clade con-
taining all included isolates of S. minor, confirming the 
identity of the sequenced isolates (Fig. 7). The alignment 
of the ITS region for all the included S. minor isolates also 
showed 100% sequence identity (data not shown). The 
in silico PCR amplification predicted a 257 bp amplicon 
from both genome sequences using the S. minor diagnos-
tic PCR primers, in line with the predicted amplicon size 
of 264 bp (Abd-Elmagid et al. 2013).

A previously published reference genome currently 
serves as the reference sequence for S. minor (Yang et al. 
2022). This genome was from a hybrid assembly of long-
read and short-read sequences that overall produces 
genome sequences of higher contiguity. The contigs 
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were further scaffolded using the previously published 
genome sequence of the closely-related species S. sclero-
tiorum (Derbyshire et al. 2017) as reference. When com-
pared to the two genome sequences presented here, the 
genome size of the LC41 reference strain is 1.3 Mb larger. 
This variation might have been caused by the choice of 
sequencing platform or assembly algorithm, or could 
reflect errors in the assembly and scaffolding process 
(Nagarajan and Pop 2013). Another interesting possibil-
ity is that these variations might reflect biological differ-
ences between the strains. The three isolates vary both in 
geographic origin (Italy, Chile and China) and host spe-
cies (lettuce and chicory). Although some work has been 
done to unravel the genetic determinants of host specific-
ity and population diversity in S. sclerotiorum (Aldrich-
Wolfe et  al. 2015; Derbyshire et  al. 2022), this has not 
been echoed in S. minor. The availability of three genome 
sequences provides an exciting opportunity for future 
studies investigating the genomic basis of host speci-
ficity and pathogenicity for this important agricultural 
pathogen.

Authors: Chanel Thomas, Sikelela Buthelezi, Brenda D. 
Wingfield, and P. Markus Wilken.
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Draft genome sequence of Rosellinia necatrix from avocado 
in South Africa
Introduction
Rosellinia necatrix is an ascomycete pathogen of plants 
in tropical, subtropical and temperate regions (Sivane-
san and Holliday 1972; Petrini 1992). This fungus causes 
white root rot on many important crops, including apple, 
avocado, mango, and pear. Rosellinia necatrix invades 
the roots and crown which leads to the collapse of con-
ducting vessels and eventually results in wilt and sud-
den death of infected plants (Pliego et al. 2009). Due to 
its resistance to chemical treatments, control and eradi-
cation of R. necatrix have become notoriously difficult 
(Pasini et al. 2016).

In South Africa, R. necatrix has been detected on apple 
and pear since the 1970s (Van der Merwe and Matthee 
1974). In 2018, it was first reported to cause tree decline 
in avocado in the country (van den Berg et al. 2018). Since 
then, it has been spreading rapidly and is now present in all 
three major avocado-producing provinces of South Africa 
(Hartley et  al. 2022). Nothing is known regarding the 
sources of R. necatrix introduction into South Africa nor 
its genetic diversity in the country. In this study, we report 
the genome sequence of a R. necatrix strain isolated from 
avocado in South Africa. This genomic resource, together 
with genome sequences of the species from other hosts 

and locations (Shimizu et al. 2018); https://​www.​ncbi.​nlm.​
nih.​gov/​biopr​oject/​727191), will facilitate comparative 
genomic studies and the development of genetic markers 
to study this important plant pathogen.

Sequenced strain
South Africa: Limpopo, isol. Persea americana, 2016, J. 
Engelbrecht (CMW50482, PREM 63335-dried culture).

Nucleotide sequence accession number
The Whole Genome Shotgun Project has been deposited 
at DDBJ/ENA/GenBank under the BioProject number 
PRJNA884201.

Materials and methods
Genomic DNA was extracted from a single hyphal cul-
ture of R. necatrix CMW50482 using the salt-based DNA 
extraction protocol of Aljanabi and Martinez (1997) with 
modifications (Duong et al. 2013). DNA was sent to Mac-
rogen (Seoul, Korea) where a TruSeq PCR free library 
was constructed and sequenced on the HiSeq 2500 plat-
form to generate paired-end reads of 251 bp. The sequence 
data were quality filtered and assembled in CLC Genom-
ics Workbench v.22.0.1 (QIAGEN, Aarhus, Denmark). 
Quality filter parameters included a minimum quality 
limit of 0.02, removal of ambiguous nucleotides, removal 
of homopolymers at the 5′ and 3′ end when 9 out of 10 in 
a window are homopolymers and final reads had to be a 
minimum of 100 nucleotides. A de novo genome assembly 
was performed with default parameters, but with a bub-
ble size of 100 and a word size of 40. Reads were mapped 
back to the contigs during assembly, which also updates 
the assembled contigs based on mapping information. 
The Genome Finishing Module v.22 was used to extend 
the contigs, using a minimum coverage cut-off of 10 reads 
and a maximum unaligned ends coverage cut-off of 30%. 
Contigs with a minimum length of 1 kb were selected to be 
included in the final assembly. Genome completeness was 
assessed based on the set of 1706 conserved Ascomycete 
single copy orthologs using BUSCO v.5.3.2 (Manni et  al. 
2021). AUGUSTUS v. 3.2.3 (Stanke et al. 2006) was used 
to annotate protein coding genes using the species model 
for Fusarium graminearum. To validate the identity of the 
isolate that was used for sequencing, the ITS gene region 
was extracted from the assembly and phylogenetic analysis 
was conducted with a reference dataset of R. necatrix and 
closely related species obtained from Hartley et al. (2022).

Results and discussion
A total of 25.6  million paired-end reads were generated, 
of which 24.6  million paired reads with an average read 

https://www.ncbi.nlm.nih.gov/bioproject/727191
https://www.ncbi.nlm.nih.gov/bioproject/727191
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length of 223 bp remained after trimming and quality fil-
tering. The genome assembly resulted in 1362 contigs that 
were larger than 1000 bp with a maximum contig length of 
560 kb and an N50 value of 124 kb, and thus the genome 
was sequenced with 65ʹ coverage. The assembled genome 
size was 48.79  Mb, with a GC content of 46.25%. Phylo-
genetic analysis using the ITS gene region extracted from 
the assembly confirmed the taxonomic identity of the 
sequenced isolate as R. necatrix (Fig. 8). The assembly size 
of R. necatrix in this study is larger than that of a previ-
ous sequenced isolate from pear in Japan (44 Mb: Shimizu 
et  al. 2018), but in the same range with those from roses 
(48.7–49.2  Mb: https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​
727191), indicating the great variability in genomic com-
position of the species. BUSCO analysis indicated that the 
assembled genome had a 96.2% completeness score (0.1% 
duplicated and 3.8% missing). AUGUSTUS predicted a 
total of 10 714 protein-coding genes from the genome 
assembly. The genomic resource presented here represents 

the first R. necatrix genome from an isolate associated 
with avocado (Persea americana) and will contribute to a 
better understanding of the genetic mechanisms underly-
ing pathogenicity and virulence of the species. This genome 
resource will also be useful for the development of molecu-
lar markers for population studies of this important species.
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