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Abstract 

Lichen as mutualistic symbiosis is the dominant organism in various extreme terrestrial environment on Earth, how‑
ever, the mechanisms of their adaptation to extreme habitats have not been fully elucidated. In this study, we chose 
the Antarctic dominant lichen species Usnea aurantiacoatra to generate a high‑quality genome, carried out phyloge‑
netic analysis using maximum likelihood and identify genes under positive selection. We performed functional enrich‑
ment analysis on the positively selected genes (PSGs) and found that most of the PSGs focused on transmembrane 
transporter activity and vacuole components. This suggest that the genes related to energy storage and transport 
in Antarctic U. aurantiacoatra were affected by environmental pressure. Inside of the 86 PSGs screened, two protein 
interaction networks were identified, which were RNA helicase related proteins and regulator of G‑protein signaling 
related proteins. The regulator of the G‑protein signaling gene (UaRGS1) was chosen to perform further verification 
by the lichen genetic manipulation system Umbilicaria muhlenbergii. Given that the absence of UmRgs1 resulted 
in elevated lethality to cold shock, the role for UaRgs1 in Antarctic U. aurantiacoatra resistance to cold can be inferred. 
The investigation of lichen adaptation to extreme environments at the molecular level will be opened up.

Keywords Lichen‑forming fungi, Polar region, Genome, Genomic syntenic alignment, Protein interaction network, 
G‑protein signaling

INTRODUCTION
Lichens are stable mutualistic symbiosis composed of 
fungi and algae or cyanobacteria, also including a diverse 
microbiome (Honegger 1991, Lücking and Nelsen 2018, 
Hawksworth and Grube 2020; Zhang et  al. 2023). In 

lichens, lichen-forming fungi (LFF) provide protection 
to algae, whereas the algae provide photosynthetic nutri-
tion for the LFF. This symbiotic form allows lichens to be 
widely distributed in extreme environments worldwide, 
including polar, plateau, and desert regions. For this 
reason, lichens are known as “pioneer organisms” of the 
terrestrial ecosystem and stress-tolerant extremophiles 
(Yang et  al. 2023). Taking the Antarctica as an exam-
ple, it is the coldest continent in the world with 99.8% 
of the area covered by ice (Burton-Johnson et  al. 2016). 
In its northern region, there are some ice-free and rela-
tively mild sites called the Maritime Antarctica such as 
Fildes Peninsula of King George Island (Fig. 1a), where is 
characterized by annual mean temperature − 3 to − 4 °C, 
sometimes lower than − 10 to − 12  °C in over 8-month-
long winter, and common freeze–thaw cycle. However, 
lichens not only can survive but also are predominant 
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organisms with over 400 species in Antarctic vegetation 
here, as comparison, only two vascular plant species exist 
(Øvstedal and Smith 2001).

Although knowledge of the lichens has been accumu-
lated on biodiversity and conservation (Romeike et  al. 
2002; Wauchope et  al. 2019), as well as how they are 
influenced by Antarctic climate change (Sancho et  al. 
2017), the mechanism by which lichen species are adap-
tive to such an extreme environment and dominate the 
terrestrial vegetation is yet to be fully elucidated. The 
corresponding researches were only reported on animals 
(Li et al. 2014a; Daane and Detrich 2022) and green algae 
(Zhang et al. 2020) here. To our knowledge, no Antarctic 

lichen genome has yet been sequenced and analyzed. 
Moreover, the number of sequenced genomes is still too 
little in relation to the great variety of lichen species. The 
lack of enough genetic information, as well as limitations 
such as slow growth and difficulty in genetic manipula-
tion, have slowed down the development of research on 
lichen resistance mechanism. In this context, genomics 
will be a more effective and feasible strategy.

Through our field investigation in the Fildes Penin-
sula of King George Island in Antarctica, we found the 
lichen species Usnea aurantiacoatra thriving there, and 
covering the ground gravel like grassland (Fig.  1a-1b), 
suggesting strong adaptation to the polar environment. 

Fig. 1 Antarctic Usnea aurantiacoatra and its genome annotations. a Location of the Fildes Peninsula on the Antarctic continent and the sampling 
site of U. aurantiacoatra. The sampling site is marked with solid red circles. b Habitat of U. aurantiacoatra in Ardley Island, which looks like a grassland 
from a distance. And the morphology of saxicolous lichen thallus in the field. c Genome annotations of U. aurantiacoatra (NJ115‑6). Circos 
representation of detailed information about the genome. a: Contigs over 500 Kb are labeled with names; b: Gene length; c: gene density (gene 
numbers per 100 Kb); d: GC abundance (GC percentage per 100 Kb); e: duplicate density (duplicate numbers per 100 Kb). d Abundance of repetitive 
elements in six lichen genomes. The repetitive elements in U. aurantiacoatra was nearly 40 Mbp, which far exceeds the amount in the other five 
genomes
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Biogeographic and phylogenetic studies also indicated 
some special characteristics of this lichen. Firstly, major-
ity of usneoid lichens distributed in low- and medium-
latitude regions, including most species of Usnea and 
other related genera, whereas only several Usnea species 
including U. aurantiacoatra are confined in Antarctica. 
Secondly, these Usnea species confined in Antarctica 
and high-latitude represent one separate subclade, sug-
gesting a significant genetic differentiation from the 
usneoid ancestors (Øvstedal and Smith 2001; Wirtz et al. 
2006; Thell et  al. 2012; Divakar et  al. 2017). Based on 
these comprehensive characteristics, U. aurantiacoatra 
was chosen as our research model for cold adaptation of 
lichens.

In this study, three LFFs were de novo whole-genome 
sequenced, yielding a high-quality genome of U. auran-
tiacoatra. Genomic syntenic alignment was comprehen-
sively performed in six usneoid LFFs, yielding a list of 
positively selected genes for environmental adaptation 
in U. aurantiacoatra. We performed functional enrich-
ment and protein interaction network analysis and found 
that positively selected genes cluster into vacuole compo-
nents, transporter proteins, RNA helicase, and G-protein 
signaling. We chose to use Umbilicaria muhlenbergii for 
functional validation of positively selected genes because 
U. muhlenbergii has genetic manipulation system (Wang 
et  al. 2020, 2023), and it also grows extensively in cold 
region like U. aurantiacoatra, both of which belong to 
Lecanoromycetes. Protein interaction network analyses 
indicated that UaRGS1 may play an important role in the 
adaptation of U. aurantiacoatra to the Antarctic environ-
ment, and that deletion of its ortholog, UmRGS1, in U. 
muhlenbergii resulted in the inability of U. muhlenbergii 
to tolerate cold-shock. Our results provided evidence for 
understanding the adaptation of U. aurantiacoatra to 
Antarctic environments and would open up the study of 
adaptive mechanisms in lichens at molecular level.

METHODS
Sample information
The Usnea aurantiacoatra lichen sample (NJ115-6) 
in minor amount was collected from the Fildes Pen-
insula, King George Island in Antarctica (Fig.  1a-1b, 
Table  S1). The other two usneoid lichens, Dolichousnea 
longissima (coll.no. SC-9, syn. Usnea longissima) and an 
unknown Usnea species (coll.no. SC-4), were collected 
from the Sichuan Province of China (Table  S1), consid-
ering their cold habitat source due to the high altitudes, 
and close phylogeny to U. aurantiacoatra. All samples 
were identified based on morphological observation 
and nuclear ribosomal DNA internal transcribed spacer 
(ITS) sequences, which were amplified using ITS4/ITS5 

(White  et al. 1990), and the sequencing results were 
blasted in the NCBI database.

DNA extraction
The thallus of U. aurantiacoatra (NJ115-6), D. longissima 
(SC-9), and U. sp. (SC-4) were surface-cleaned and steri-
lized by immersion in 75% ethanol for 1 min, 1% sodium 
hypochlorite for 1 min, and sterile water for 1 min. Sam-
ples were then aired on sterile filter paper for half a day 
in a clean bench. The U. aurantiacoatra (NJ115-6) sam-
ple was directly sent to Nextomics Biosciences in Wuhan, 
China, and the thallus of D. longissima (SC-9) and that of 
U. sp. (SC-4) were sent to Majorbio in Shanghai, China, 
for DNA extraction and genomic sequencing.

De novo whole‑genome sequencing
A sequencing strategy, combining second-generation, 
Hi-C, and third-generation sequencing techniques, was 
used for the sequencing of usneoid lichen genomes. After 
quality checking, the qualified genomic DNA was used 
to construct a non-replication large-fragment genomic 
library with ~ 20 Kbp fragment sizes. The pooled library 
was bound to a polymerase and loaded onto a PacBio 
Sequel, after which PacBio Sequel SMRT Sequencing was 
performed. Hi-C libraries were prepared with indepen-
dently extracted genomic DNA of the U. aurantiacoatra 
sample, and an Illumina sequencing library was con-
structed with a mean fragment size of ~ 350 bp for fur-
ther Illumina Hiseq X10 sequencing. Hi-C and Illumina 
Hiseq sequencing data were used for genome-assisted 
assembly. For genomic DNA from samples of U. sp. 
(SC-4) and D. longissima (SC-9), independent Illumina 
Hiseq2500 sequencing was performed with 300- and 
380-bp sequencing libraries, respectively, which was used 
for further de novo genome assembly.

Genome resources available in public databases
Genome information of Evernia prunastri (Meiser et al. 
2017), Usnea florida (https:// mycoc osm. jgi. doe. gov/ 
Usnfl o1/ Usnfl o1. home. html), and Alectoria sarmen-
tosa (Liu et  al. 2019a) used for comparative genome 
analysis were download from JGI (Grigoriev et al. 2014) 
and NCBI database. Genome information of Letha-
ria lupina (McKenzie et  al. 2020), Imshaugia aleurites 
(PRJEB42325), Gomphillus americanus (PRJEB42325), 
Alectoria fallacina (PRJEB42325), Bacidia gigantensis 
(Allen et al. 2021), Physcia stellaris (Wilken et al. 2020), 
Letharia columbiana (McKenzie et al. 2020), and Lasal-
lia pustulata (Merges et  al. 2023) used for analyzing 
amino acid residues of positively selected genes were 
downloaded from NCBI database.

https://mycocosm.jgi.doe.gov/Usnflo1/Usnflo1.home.html
https://mycocosm.jgi.doe.gov/Usnflo1/Usnflo1.home.html
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Genome assembly and annotation
The initial genome assembly was performed using FAL-
CON software (Chin et al. 2013). For Hi-C data, Bowtie2 
(v.2.3.2) (Langmead and Salzberg 2012) and HiC-Pro 
(v.2.8.1) (Servant et  al. 2015) were applied for mapping 
reads, identifying valid interaction paired reads, and 
clustering scaffolds, respectively. Contigs with depths 
less than 50 × coverage were filtered out to exclude low-
coverage genome sequences particularly potential algal 
genome sequences. FCS-GX was used to reconfirm the 
low degree of contamination from algae genomes (Asta-
shyn et al. 2024). The final assembly was polished using 
independently sequenced Illumina Hiseq raw reads.

For protein-coding gene prediction, Augustus (Stanke 
et al. 2006) and GeneID (Parra et al. 2000) were used for 
de novo annotation, whereas GeMoMa (Keilwagen et al. 
2016) and Genewise (Birney et  al. 2004) were used for 
homologous annotation. The EVidenceModeler method 
(Haas et  al. 2008) was used to integrate the two results 
for genomes sequenced in this study, including U. auran-
tiacoatra (NJ115-6), U. sp. (SC-4) and D. longissima (SC-
9). The Funannotate (v1.8.13) with Usnea florida as the 
training model was used for genomes of Evernia pru-
nastri and Alectoria sarmentosa. For D. longissima (SC-
9), ORFs with both a start codon and a stop codon were 
retained to exclude incomplete annotations caused by 
short scaffolds.

For repeat sequence annotation, RepeatMasker (v.4.1.2) 
(Chen 2004), RepeatModeler (v.2.0.2) (Flynn et al. 2020), 
RepeatProteinMasker (v.4.1.2) (Chen 2004), and Tan-
demRepeatFinder (v.4.09) (Benson 1999) were used with 
the repeat sequence database constructed with the U. 
aurantiacoatra (NJ115-6) assembly itself.

For ncRNA annotation, Rfam (Griffiths-Jones et  al. 
2005), tRNAscan-SE (Lowe and Eddy 1997), and RNAm-
mer (Lagesen et  al. 2007) were used. For protein cod-
ing gene annotation, the first approach was to query the 
whole protein sequence to Swissprot (Bairoch et al. 2005) 
and KEGG (Ogata et  al. 1999) databases, whereas the 
second approach was to use InterProScan (Zdobnov and 
Apweiler 2001) to identify conserved protein domains 
and annotate gene function. A circos plot (Krzywinski 
et al. 2009) was used to visualize the genomic landscape 
of related annotations.

Orthologous gene identifications by genome syntenic 
alignment
We performed genomic syntenic alignment for six lichen 
genomes, including U. aurantiacoatra (NJ115-6), U. sp. 
(SC-4), U. florida (ATCC18376), D. longissima (SC-9), 
E. prunastri (FR SP7-11), and A. sarmentosa (MAF-Lich 
21536), using LASTZ (version 1.04.00) (Chen et al. 2019; 

Hecker and Hiller 2020). The genome of U. florida was 
used as the reference genome, and the other five genomes 
were aligned to it. The five pair-align results were com-
bined to obtain a final multispecies alignment as a mul-
tiple alignment format file. Then, the corresponding U. 
florida annotated coding sequence was used as reference 
to retrieve orthologous DNA sequences from the mul-
tiple alignment format file. This dataset of orthologous 
sequences of the six species included 12,243 genes and 
was a start-up orthologue dataset for further analyses.

Evolutionary genetic analyses for adaptive selection
For positive selection analyses using PAML (v4.8), two 
tree-setting strategies were considered. Focusing on U. 
aurantiacoatra as the foreground branch, strategy #1 
used all five species as background branches, and strat-
egy #2 excluded D. longissima from the five species, using 
only four species as background branches. The reason to 
consider using strategy #2 was because the obvious fast 
growth rate of D. longissima (1–3 cm per year) compared 
with U. aurantiacoatra (4.3–5.5  mm per year) (Keon 
2009; Esseen et  al. 1981; Jansson et  al. 2009; Li et  al. 
2014b). The results of the two tree strategies were com-
bined to a final result. For each strategy, the same “more 
than 20% of the alignment in a gap” screening criterion 
was implemented. The result dataset of the two strategies 
included 5674 and 6202 orthologous genes, respectively, 
and their concatenated set was 6226 genes.

Based on the reconstructed phylogenomic tree, posi-
tively selected genes (PSGs) were identified using the 
branch-site model of the codon evolution with model = 2 
and Nssites = 2, whereas for the branch model, the 
parameters were the null model (model = 0) versus the 
alternative model (model = 2). Genes with omega value 
(dN/dS) larger than 1 and statistically significant between 
foreground and background branch were regarded as 
PSGs. In PAML, a chi-square test is used to exam the sta-
tistical significance of the omega larger than 1. Besides, 
an FDR test was performed to exclude potential false 
positive PSGs.

To further confirm the target PSGs and find its poten-
tial amino acid residues where positive evolution occurs, 
eight additional lichen species with available genome 
data from Lecanoromycetes were added, including Leth-
aria lupina (McKenzie et  al. 2020), Imshaugia aleurites 
(PRJEB42325), Gomphillus americanus (PRJEB42325), 
Alectoria fallacina (PRJEB42325), Bacidia gigantensis 
(Allen et al. 2021), Physcia stellaris (Wilken et al. 2020), 
Letharia columbiana (McKenzie et al. 2020), and Lasallia 
pustulata (Merges et al. 2023). Orthologous genes of the 
target PSGs were identified from the total 14 genomes by 
a reciprocal BLAST strategy of INPARANOID algorithm 
(Remm et  al. 2001). The potential amino acid residues 
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were aligned to check their evolution and possible substi-
tution variations.

Protein interaction network
Protein interaction network analyses were performed in 
EMBL’s STRING (http:// string. embl. de). Four different 
fungal model species were implemented as background 
genomes for analyses, including Aspergillus nidulans, 
Cryptococcus neoformans, Neurospora crassa, and Sac-
charomyces cerevisiae. For analyses the PSGs in U. auran-
tiacoatra, a 0.40 default interaction score of medium 
confidence was used. Domain analyses were performed 
in the SMART online website (http:// smart. embl. de/ 
smart/), with PFAM and signal peptide items checked.

Generation of ΔUmrgs1 mutant for functional verification
The UaRGS1 ortholog in Umbilicaria muhlenber-
gii, UmRGS1, was identified by searching the genome 
(unpublished data) using a reciprocal BLAST strat-
egy (Remm et  al. 2001). The split-marker approach 
was applied to knock out UmRGS1 in U. muhlenber-
gii. Upstream and downstream flanking sequences of 
UmRGS1 were amplified using primers 1F/2R and 3F/4R 
(Table  S2), respectively. The resulting PCR fragments 
were ligated onto the hph cassette amplified from pCX63 
(Zhao et  al. 2005) with primers HT-F/HY-R and YG-F/
HT-R. The final UmRGS1 gene replacement fragments 
were transformed into protoplasts generated by Drise-
lase (Sigma-Aldrich), as described previously (Wang 
et  al. 2020). Hygromycin-resistant transformants were 
screened by using PCR with primers 5F/6R, 7F/HY-R, 
YG-F/8R, and H850/H852 (Fig. S1).

The lichen-forming fungus U. muhlenbergii strain 
(wild type) and UmRGS1 gene knockout mutant strains 
(LR2, LR5, and LR8) were routinely cultivated on potato 
dextrose agar medium at 20 °C for 7 days. To detect the 
survival rate of ultra-low-temperature stress, 2 ×  103 
cells of the U. muhlenbergii JL3 strain and ΔUmrgs1 
mutants were subjected to six freeze–thaw cycles of 

liquid nitrogen without any protective agent. Cold-
shocked cells were recovered on PDA medium at 20  °C 
for 10 days. Each experiment was performed in triplicate 
to count the number of colonies on the recovered plates.

RESULTS
De novo genome assembly combined multi‑sequencing 
technologies yield high‑quality genome of Usnea 
aurantiacoatra
To obtain a high-quality reference genome, we sequenced 
Antarctica U. aurantiacoatra (NJ115-6) (Fig.  1a-1b) 
using three sequencing techniques of PacBio, HiSeq 
(Illumina) and Hi-C. First, we assembled the genome 
sequences with 61.01  Gbp PacBio data using FALCON, 
and obtained a draft genome with a size of 81.0  Mbp 
(187 contigs; contig N50 944.85 Kbp) after removing the 
potential contaminant and redundant sequences. Then, 
we corrected the contigs with 86.83 Gb HiSeq data using 
pilon (v.1.24) (Walker et al. 2014). Finally, we linked the 
corrected contigs to scaffolds with 73.71  Gb Hi-C data 
using Bowtie2 (v.2.3.2), HiC-Pro (v.2.8.1), and LACHE-
SIS (Burton et al. 2013), and obtained a total of 81.4 Mb 
genome sequences (121 scaffolds; Scaffold N50 1.59 Mb; 
Fig. 1c; Fig. S2; Table 1).

We also performed Hiseq sequencing of the genome of 
two other usneoid lichen U. sp. (SC-4) and D. longissima 
(SC-9). We sequenced the genomic DNA (9.83  Gb for 
SC-4; 11.5 Gb for SC-9), and assembled a total of 40.6 Mb 
of SC-4 (contig N50 10.5  Kbp; scaffold N50 13.9  Kbp) 
and 67.3 Mbp of SC-9 (contig N50 1.3 Kbp; scaffold N50 
1.8 Kbp) genome sequences using SOAPdenovo2, respec-
tively (Table  1). Gene annotation obtained 13,534 pro-
tein-coding genes for U. aurantiacoatra, 13,191 genes for 
U. sp., and 12,475 genes for D. longissima (Table 1).

To carry out a comparative genome analysis, genome of 
Usnea florida (ATCC18376), Evernia prunastri (FR SP7-
11), and Alectoria sarmentosa (MAF-Lich 21536), which 
belong to the same family (Parmeliaceae) as the three 
usneoid lichens mentioned above, were selected from the 

Table 1 Genome assembly statistics of usneoid lichens sequenced in this study

U. aurantiacoatra (NJ115‑6) U. sp. (SC‑4) D. longissimi (SC‑9)

Total Bases (Gbp) 86.83 9.83 11.50

Assembly size (Mbp) 81.40 40.60 67.30

No. Scaffolds 121 8966 59,938

Scaffolds N50 (Kbp) 1590 13.90 1.80

BUSCO (%) 97.36 88.51 54.22

Duplicated BUSCO (%) 16.41 0.47 1.70

Predicted genes 13,534 13,191 12,475

Accession GWHBJEF00000000 GSA: CRA007127 GSA: CRA007127

http://string.embl.de
http://smart.embl.de/smart/
http://smart.embl.de/smart/
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published genomic data. Of these six genomes, U. auran-
tiacoatra genome was the largest, almost double the size 
of the LFF genomes that have been published so far. To 
uncover the reason for the highly expanded genome 
size of U. aurantiacoatra, repeat sequence annotation 
was performed in these six LFF genomes. Comparison 
showed that the repeat sequences of U. aurantiacoatra 
were significantly higher than those of the other five 
genomes, with the greatest expansion of long terminal 
repeat (LTR) and unknown repeat sequences (Fig.  1d). 
The total size of all types of repeat sequence was about 
40  Mbp, the same as the genome sizes of other lichen 
species except U. aurantiacoatra. Considering simi-
lar gene number in the six genomes (Table 1), it can be 
concluded that the large genome size in U. aurantiaco-
atra is due to amplification of repeat sequences. We also 
performed BUSCO assessment of the three usneoid LFF 
genome data obtained in this study, U. aurantiacoatra 
has the more complete genome (Fig. S3).

Genome signatures for adaptive selection of U. 
aurantiacoatra
In search of adaptive selection traits at genomic level, 
6226 concatenated genes obtained by two tree-setting 
strategies (Fig.  2a) were used for positive selection 

analysis by PAML, and were corrected the p-values with 
false discovery rate (FDR) analysis (Fig. 2b). There were 
178 PSGs with corrected p-values < 0.1 under both strat-
egies (Fig.  2b), removing 35 pseudogenes yielded 143 
PSGs (Fig. 2c), which included 86 PSGs paired with genes 
annotated by EVidenceModeler (Table S3).

We calculated ω ratios (dN/dS) for 6226 orthologous 
genes, and comparisons revealed that the average value 
of the ω ratios for U. aurantiacoatra was significantly 
higher than that of other LFF (p < 0.01, Fig. 2d, Table S4–
S5), indicating that negative selection in this species is 
universally more relaxed than other species.

Functional enrichment and protein interaction network 
of positively selected genes
To acquire the biological processes and functions in 
which the above PSGs were involved, we performed 
functional enrichment analysis using clusterProfiler (Wu 
et al. 2021) with GO categories and KEGG pathways. By 
functional enrichment of 86 PSGs with a Q-value < 0.05, 
it showed that most of these proteins were associated 
with transmembrane transporter functions and vacuole 
components, and cyanoamino acid metabolism was also 
enriched (Table S6).

Fig. 2 Positive selection related to the adaption to extreme Antarctic environments. a Workflow of evolutionary genetic analyses for adaptive 
selection. Genomic syntenic alignment found 12,243 orthologs in six genomes, which were filtered for two tree‑building strategies. The 
concatenation obtained by both strategies was used for adaptive analysis, resulting in 178 potential positively selected genes (PSGs). b The 
p‑values of the potential PSGs obtained by two strategies were corrected for false discovery rate (FDR) analysis. Red and blue dots indicated PSGs 
with p‑values < 0.1 in strategy I and II, respectively. Yellow dots were PSGs with corrected p‑values < 0.1 under both strategies, which were used 
for subsequent analysis. c Pie chart showing the number of pseudogenes, annotated genes, and non‑annotated genes in 178 potential PSGs. d Box 
plot of mean dN/dS shows a significantly high mean ω value in U. aurantiacoatra (p < 0.01)
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To identify potential functional information related to 
adaptive selection, protein-associated network analysis 
was carried out with EMBL’s STRING platform using 
four model fungal species (Aspergillus nidulans, Cryp-
tococcus neoformans, Neurospora crassa, Saccharomyces 
cerevisiae). Of the 4 model fungi species in STRING, we 
identified 6 protein interaction networks, which included 
35 genes of the 86 PSGs (Table S7). PSGs in four of these 
protein interaction networks were enriched in the GO 
category described above, which were related to trans-
membrane transporter activity or/and vacuole compo-
nent (Fig. 3). The other two protein interaction networks 
that were not enriched by KEGG or GO were the G-pro-
tein-signaling and RNA helicase (Fig. 3). The RNA heli-
case network involves 12 proteins with functions related 
to the processing and maturation of rRNA and tRNA 
modification in the initiation of protein translation 
(Fig. 3). The G-protein-signaling network contains three 
proteins, regulator of G-protein-signaling, casein kinase 
I, and carboxypeptidase (Fig. 3).

Effects of regulator of G‑protein‑signaling in cold 
resistance
To characterize PSGs as evidence of environmental 
adaption in Antarctic U. aurantiacoatra, we selected 

regulator of G-protein-signaling to further study, and 
named this protein as UaRgs1. Since U. aurantiacoatra 
cannot be genetically manipulated, we chose to knock 
out the homologous of UaRGS1 in Umbilicaria muh-
lenbergii (UmRGS1). Three separate ΔUmrgs1 deletion 
mutants (LR2, LR5, and LR8) were generated and vali-
dated by PCR using anchor primers (Fig. S1; Table S2). 
We chose LR2 as the representative of mutants for the 
further cold resistant verification considering the con-
sistent phenotype among the three mutants. Knockout 
of the UmRGS1 did not affect the growth phenotype of 
U. muhlenbergii. To determine whether UmRgs1 was 
critical for cold shock, the liquid nitrogen freeze–thaw 
experiment was performed on the wild-type strain and 
ΔUmrgs1 mutants. After three parallel experiments, the 
average number of wild-type and ΔUmrgs1 mutant col-
onies was 94 and 33 on the recovery medium, respec-
tively (Fig. 4a; Table S8). The survival rate of wild-type 
strain (4.7%) was nearly three times that of the 
ΔUmrgs1 mutant (1.65%), with a significant difference 
between them (p = 0.001), indicating that the ΔUmrgs1 
mutant is more sensitive to rapid freeze–thaw tem-
perature changes than the wild-type. Therefore, we can 
deduce that UaRgs1 may have similar and even stronger 

Fig. 3 Protein interaction networks of positively selected genes (PSGs) in Usnea aurantiacoatra. A total of 35 PSGs were in six protein interaction 
networks, four of which were enriched for vacuole component and transmembrane transporter activity. In addition to this, a larger protein 
interaction network centered on RNA helicase, and another network of three proteins centered on regulator of G‑protein signaling
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function in Antarctic U. aurantiacoatra for resistance 
of the freeze–thaw sharp temperature changes.

We also identified potential amino acid residues where 
positive evolution occurs on UaRgs1 (Fig.  4b). A phy-
logenetic tree and multiple alignment using additional 
UaRgs1 orthologous in 13 LFFs, showed that amino 
acid 519 site, located in the DEP domain, was highly 
conserved but changed in Antarctic U. aurantiacoatra 
(Fig.  4c-4d), suggesting that the adaptive selection is 
associated with the biochemical and molecular function 
of the gene. Another branch site analysis for these 14 Rgs 
genes was conducted and the outcome showed that site 
519 was under positive selection, which enhanced out 
conclusion.

DISCUSSION
The three poles, Antarctica, Arctic and the Third Pole 
(i.e., the Tibetan Plateau and its surroundings), are the 
coldest environment on the Earth, of which Antarctica is 
the most severe one and recorded the lowest air tempera-
ture. Lichens, as the pioneer organisms, can dominantly 
survive in such extreme environments and contribute 
substantial biodiversity of their flora, for which a set of 
cold tolerance mechanisms are needed. Previous studies 

on the Antarctic lichens mainly focused on the correla-
tion of lichen biodiversity and conservation with climate 
change (Sancho et  al. 2017; Romeike et  al. 2002; Wau-
chope et  al. 2019). A related study revealed differences 
in biosynthetic gene clusters between Umbilicaria pus-
tulata lichens in Mediterranean and cold-temperate 
regions (Singh et al. 2021). This suggests that there must 
be a large number of environmental adaptation genes in 
Antarctic lichen genome. In this case, Usnea aurantiaco-
atra was chosen as a model mainly due to our field inves-
tigation and the good matching between divergent time 
of this lichen and the paleoclimate and paleogeology of 
Antarctica discovered by our study, which indicated that 
it is very likely to have a strong adaption to the Antarctic 
extreme environment driven by natural selection.

The approaches identifying natural selection at the 
molecular evolution level involves estimation of syn-
onymous and nonsynonymous substitution rates and 
detection of positive selection in protein-coding DNA 
sequences among species (Yang 2007). We comprehen-
sively compared the genomes between U. aurantiacoatra 
and those lichens mainly living in the temperate regions, 
then attempted to remove D. longissima with different 
growth rates when analyzing PSGs. The results of the two 

Fig. 4 Functional verification of UmRGS1 in rock tripe Umbilicaria muhlenbergii. a Survival colonies and survival rate of wild‑type strain and ΔUmrgs1 
mutant after six liquid nitrogen freeze–thaw cycles. Error bars represent SD, unpaired T‑test with Welch’s correction, p = 0.001, n = 3 independent 
experiments. b Domain architecture of UaRgs1 and the locations of three amino acid residues undergo positive evolution. c Phylogenetic tree 
constructed by UaRgs1 with its homologous in 13 other lichen‑forming fungal genomes. List on the right were the amino acids and corresponding 
codons for the three positive selection sites in UaRgs1. d Multiple alignment of the same set of protein sequences, with asterisks marking the sites 
of three amino acids, and amino acid position 519 was in conserved domain
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strategies were slightly different (Fig. S4), but the results 
obtained from different background branches may be 
both meaningful. We used a combination (the union) of 
the two strategies to ensure that genes selected by either 
strategy would be included in the final set of result genes.

The identified 86 PSGs possibly related to cold adapta-
tion mainly enriched in lytic and storage vacuole com-
ponents. The fungal vacuole serves as both the main 
compartment for division and a reservoir for the storage 
of small molecules, such as polyphosphate, amino acids, 
divalent calcium, and other small molecules (Klionsky 
et al. 1990). In some fungi, genes controlling the forma-
tion of vacuole play an important role in resistance to 
stresses (Son et  al. 2018; Wilken et  al. 2020; Zhu et  al. 
2023). Antarctic lichens need to undergo long periods of 
dormancy, and it is hypothesized from our results that U. 
aurantiacoatra enhance its vacuole function under selec-
tive pressure.

Two other potentially important mechanisms were 
found through protein network analysis. RNA heli-
case at the center of the largest protein interaction net-
work, has been intensively studied in both eukaryotes 
(O’Day et  al. 1996) and bacteria (Liu et  al. 2021). This 
gene involves in the maturation of 35S-pre-rRNA and is 
required for cleavages leading to mature 18S rRNA in cell 
nucleus, which plays a critical role for the biogenesis of 
ribosomes. RNA helicase has been shown to be related 
to thermo-tolerance in rice (Wang et al. 2016) and cold 
tolerance in glacial psychrophilic Flavobacterium (Liu 
et  al. 2021). Besides, the tRNA methyltransferase gene 
interacted with RNA helicase (Fig. 3) has also been veri-
fied to be related with temperature changes in bacteria 
and yeast (Lorenz et  al. 2017, Hori 2014). In LFF Clad-
onia grayi, rRNA and the biogenesis of ribosomes have 
been suggested to be closely related with stress resistance 
(Armaleo et  al. 2019). Our results provide further evi-
dence of the importance of the RNA helicase associated 
protein network in resistance.

In this study, we chose to perform an extended analysis 
of regulator of the G-protein signaling (RGS) in another 
protein network, because G-protein and RGS belong to 
important pathways that receive external signals in fungi 
(Lengeler et  al. 2000; Zhong and Neubig 2001; McCud-
den et al. 2005). Orthologous genes of UaRGS1 involves 
in the regulation of growth, sporulation, and patho-
genicity in model fungi (Chan and Otte 1982; Yu et  al. 
1996; Ballon et al. 2006; Liu et al. 2007), but there is no 
experimental evidence that it is related to external low-
temperature stimuli or other environmental stress. Here, 
we verified the new function of RGS related to the ultra-
low temperature tolerance. Furthermore, it is worth men-
tioning that there is a casein kinase I gene in the UaRgs1 
protein interaction network (Fig.  3). Casein kinase I is 

conserved from plants to animals, it performed a num-
ber of cellular processes, including DNA repair, cell cycle, 
cytokinesis, vesicular trafficking, and circadian rhythm 
(Park et al. 2012; Marzoll et al. 2022). The protein inter-
action network analysis allows further enrichment of 
PSGs and can shed more light on the cellular processes in 
which environmentally adapted genes are involved. The 
identification of RGS and casein kinase I interaction net-
work in PSGs is more indicative of G-protein signaling 
pathways that were subjected to selective pressures. Both 
RGS and casein kinase I are important factors upstream 
of cellular signaling pathways, and in the case of RGS, as 
a negative regulator of G-proteins, it is responsible for 
making the cell to respond correctly to a variety of sig-
nals, not just adaptation to cold stress, and it is possible 
that it will have similar results across different external 
stresses.

Besides, there is also some other genomic signatures 
suggesting that the LFF genome is under adaptive selec-
tion. The assembly size of U. aurantiacoatra is two times 
as large as those of other relative lichen species, which 
is caused by LTR amplification and unknown repeat 
sequences. The LTR amplification is one of the main driv-
ers leading to the big size of eukaryotic genome (Liu et al. 
2019b). LTRs show considerable enrichment in lncRNA 
transcripts compared with non-LTR elements in mouse 
and human (Kannan et al. 2015; Kapusta et al. 2013; Kel-
ley and Rinn 2012). Most of LTRs transcribed in lncR-
NAs serve as exons (Kannan et al. 2015), specific families 
have been co-opted as promoters (Thompson et al. 2016). 
In plants such as mangrove trees (Lyu et al. 2018), palm 
(Schley et al. 2022) and bamboo (Papolu et al. 2021), LTR 
copy number has been reported to crucially associated 
with adaptation to various environmental stress includ-
ing aridity or heat. Plenty of evidence suggests that LTR 
in Plants involves in the modulation of gene expression 
in response to several stimuli, notably stresses and exter-
nal challenges (Bui and Grandbastien 2012). In Medicago 
sativa, LTR has been reported to be related to cold tol-
erance. Study of Sicilian blood oranges (Citrus sinensis) 
illustrated the strength of the LTR as a promoter and as 
an upstream activating sequence is of cold dependency 
(Butelli et al. 2012). Therefore, it is reasonable to presume 
that in the U. aurantiacoatra as the symbiont of lichen-
forming fungus and plant (alga), the existence of abun-
dant LTR is related to the tolerance of cold environment.

CONCLUSIONS
In summary, based on our genomic sequencing and bio-
informatic analyses, we exhibited several potential mech-
anisms on how U. aurantiacoatra achieved its adaptation 
to Antarctic environments. We also performed func-
tional validation of one of the genes that has not yet been 
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reported to be associated with stress, further determin-
ing the accuracy of the screened PSGs. This study can 
serve as a good start to understand the environmental 
adaptions of lichens, and provide the basis and clues for 
further studies on LFF resistance mechanisms.
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