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IMA Genome-F 5A

Draft genome sequence of 
Ceratocystis eucalypticola
Many species of Ceratocystidaceae have been studied 
extensively due to their signi cance as pathogens of 
agricultural forestry crops (Roux & Wing eld 2009), as well 
as their impact on natural woody ecosystems (Roux et al. 
2007, Lee et al. 2015). The family includes eight genera 
accommodating more than 80 phylogenetically closely 
related but often morphologically similar species (van Wyk 
et al. 2013, de Beer et al. 2014, Mayers et al. 2015). These 
genera, as de ned by de Beer et al. (2014), are clearly 
delimited based on a combination of phylogenetic inference, 
morphology, and in some cases distinct ecological partitioning. 
For example, the genus Huntiella accommodates species 
that are saprobes, whereas most species of Ceratocystis are 
pathogens of angiosperms.

Species of Ceratocystis include important pathogens of 
trees propagated as non-natives in plantations in the tropics 

and Southern Hemisphere (Roux & Wing eld 2013, Wing eld 
et al. 2013), including Eucalyptus (Laia et al. 1999, Roux et 
al. 2000, Roux et al. 2001, Barnes et al. 2003). Isolates of 
Ceratocystis from Eucalyptus in South Africa, related to those 
known to kill trees in these plantations, were described as 
the new species C. eucalypticola (van Wyk et al. 2012). The 
taxonomy of this species and some of its relatives remains 
open to debate (Fourie et al. 2015, Oliveira et al. 2015) and 
there is a clear need to gain a deeper understanding of 
species boundaries as well as issues relating to its biology 
and ecology.

The aim of this study was to sequence the genome of 
C. eucalypticola in order to allow for genomic analysis and 
comparisons with already available genomes from other 
Ceratocystidaceae (Wilken et al. 2013, van der Nest et al. 
2014a, b). These comparisons, coupled with phylogenomic 
studies, will be useful in resolving the taxonomic debates 
ongoing in Ceratocystis. Additionally, these resources will 
provide a platform to characterise factors associated with 
pathogenicity and fungal ecological strategy, as well as 
provide an opportunity to study the evolution of these traits 
within a family of closely related fungi.
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Abstract: The genomes of Ceratocystis eucalypticola, Chrysoporthe cubensis, Chrysoporthe 
deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium 
nordicum and Thielaviopsis musarum are presented in this genome announcement. These seven 
genomes are from plant pathogens and otherwise economically important fungal species. The genome 
sizes range from 28 Mb in the case of T. musarum to 45 Mb for Fusarium temperatum. These genomes 
include the rst reports of genomes for the genera Davidsoniella, Graphilbum and Thielaviopsis. The 
availability of these genome data will provide opportunities to resolve longstanding questions regarding the 
taxonomy of species in these genera. In addition these genome sequences through comparative studies 
with closely related organisms will increase our understanding of how these pathogens cause disease.
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SEQUENCED STRAIN

South Africa: Mpumalanga: Sabie, isol. ex arti cial wound of 
Eucalyptus, July 2002, M. van Wyk & J. Roux (CMW 9998, 
CBS 124017, PREM 60169 – dried culture).

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The draft genome sequence of Ceratocystis eucalypticola 
(CMW9998) has been deposited at DDBJ/EMBL/GenBank 
with the accession number LJOA00000000. Here we 
describe version LJOA01000000.

METHODS

Genomic DNA of Ceratocystsis eucalypticola isolate CMW 
9998 was sequenced using the Illumina HiSeq 2000 platform 
at the UC Davis Genome Centre, University of California, 
Davis (CA). Two libraries with medium insert sizes of 350 bp 
and 530 bp were used to generate pair-end sequences with 
read lengths of approximately 100 bases. CLC Genomics 
Workbench v. 7.5.1 (CLCBio, Aarhus, Denmark) was used 
to analyse the NGS-data, as well as to perform a de novo 
assembly. Reads of low quality (P error limit of 0.05) and/or 
terminal nucleotides were trimmed, with the remaining reads 
being retained for assembly. De novo genome assembly was 
performed with a word size of 64, and a bubble size of 100 bp. 
The raw reads were mapped back to the contigs in order to 
perform scaffolding, with an estimated paired distance ranging 
from 147 to 654 bp. The completeness of the assembled 
genome was assessed using the Benchmarking Universal 
Single-Copy Orthologs tool, BUSCO (Software v. 1.1b1 of 
May 2015) (Simão et al. 2015). BUSCO was performed on 
all contigs >1 kb, making use of the fungal lineage dataset. 
Lastly, the assembly was submitted to AUGUSTUS (Stanke 
et al. 2004) in order to predict putative open reading frames 
(ORFs) using the gene models of Fusarium graminearum.

RESULTS AND DISCUSSION

The draft genome of Ceratocystis eucalypticola had an 
estimated size of 31 260 284 bases, with an N50 of 116 489 
and an average coverage of 80 . The de novo assembly 
generated a total of 2129 contigs, of which 961 were longer 
than 1 kb. The average scaffold length was 14 676 bases, 
with the largest scaffold being 726 305 bases in size. The 
GC content of the assembly was 47.9 %. BUSCO analysis 
de ned the genome as 97 % complete with 1408 single-copy 
orthologs present, while 92 BUSCO orthologs were found to 
be duplicated. Only 30 BUSCO orthologs were missing or 
fragmented out of the possible 1438 groups searched from 
the fungal lineage dataset. Gene prediction resulted in a total 
of 7353 putative ORFs, at a gene density of approximately 
235 ORFs/Mb.

The assembled genome of C. eucalypticola, with a size of 
approximately 31.2 Mb and 7353 ORFs, closely resembled 

those of other sequenced Ceratocystis spp. (Wilken et 
al. 2013, van der Nest et al. 2014a, b). The fungus had a 
genome size most similar to that of  (29.4 Mb, 
7266 ORFs) and C. manginecans (31.7 Mb, 7494 ORFs), 
while the C. albifundus genome is slightly smaller (27.2 Mb) 
with only 6967 genes predicted. The genome size statistics for 
Ceratocystis are similar to those found in the genus Huntiella, 
with H. omanensis and H. moniliformis being 31.5 Mb and 
25 Mb, respectively (van der Nest et al. 2014a, b). Gene 
predictions for Huntiella showed a slightly higher gene density 
when compared with those of Ceratocystis (243 ORFs/Mb on 
average), with H. omanensis having a density of 266 ORFs/Mb 
and H. moniliformis having 280 ORFs/Mb, respectively. 

The availability of these resources will provide 
opportunities to answer questions regarding the similarities 
and differences seen in this genus. The genome data for 
Ceratocystis s. str. is particularly useful for exploring the 
species boundaries through phylogenomic analysis. This, 
in combination with genomic comparisons to other species 
within Ceratocystidaceae, will lead to a better understanding 
of the evolution of pathogenicity and other life history traits.

Authors: C. Trollip*, T.A. Duong, M.A. van der Nest,  

*Contact: Conrad.Trollip@fabi.up.ac.za

IMA Genome-F 5B

Draft genome sequences of 
Chrysoporthe cubensis and C. 
deuterocubensis, causal agents of 
Eucalyptus canker 
Fungi in the genus Chrysoporthe are economically important 
pathogens of plantation grown Eucalyptus spp. and other 
members of Myrtales (Gryzenhout et al. 2004). These 
fungi cause serious stem canker disease, referred to as 
Chrysoporthe canker (Gryzenhout et al. 2004), and are 
predominantly found in tropical and subtropical parts of the 
world where conditions favour their growth (Alfenas et al. 
1982). Although Chrysoporthe canker has been successfully 
managed through propagation of disease resistant clones, 
it is still considered a threat since it can lead to substantial 
economic losses where resistance breeding is not in place 
(Wing eld 2003). 

There are eight described species of Chrysoporthe, 
including C. cubensis (Hodges et al. 1976, 1979, Rodas et 
al. 2005), C. doradensis (Gryzenhout et al. 2005), C. inopina 
(Gryzenhout et al. 2006), and C. hodgesiana (Gryzenhout et al. 
2004) which occur in South and Central America. Chrysoporthe 
deuterocubensis is primarily found in Southeast Asia, although 
introductions to Australia, China, Hawaii, and parts of East 
Africa have been suggested (Myburg et al. 2002, Nakabonge 
et al. 2006, van der Merwe et al. 2010). Chrysoporthe 
zambiensis and C. syzygiicola are found in ambia (Chungu 
et al. 2010), while C. austroafricana is found only in southern 
Africa (Wing eld et al. 1989, Gryzenhout et al. 2004).
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Chrysoporthe cubensis, C. deuterocubensis, and 
C. austroafricana have been isolated from native trees, 
suggesting that these fungi might be native to the regions 
where the trees are found (Myburg et al. 2003, Rodas et al. 
2005, Heath et al. 2006). Interestingly, despite the distinct 
geographical distribution, these species seem to be closely 
related (Chungu et al. 2010, van der Merwe et al. 2010). 
Unfortunately, there is limited available information regarding 
the evolution of Chrysoporthe species.

The genome of C. austroafricana was recently sequenced 
and released in the public domain (Wing eld et al. 2015). This 
is the only whole genome sequence resource available for 
the genus Chrysoporthe. Additional genomic resources could 
enhance further understanding of the biology of this assemblage 
of fungi, through genome-wide comparisons. The aim of this 
study was thus to sequence the genomes of C. cubensis (isolate 
CMW 10028) and C. deuterocubensis (isolate CMW 8650).

SEQUENCED STRAINS

Chrysoporthe cubensis: Colombia: Timba, 2002, C.A. Rodas 
(CMW 10028, PREM 58311 – dried culture). 
Chrysoporthe deuterocubensis: Indonesia: Sulawesi, 2001, 

 (CMW 8650, CBS 115719, PREM 58018 – 
dried culture). 

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The Chrysoporthe cubensis isolate number CMW 10028 and C. 
deuterocubensis isolate CMW 8650 Whole Genome Shotgun 
projects were deposited in GenBank with accession numbers 
LJCY00000000 and LJDD00000000, respectively. The version 
described here is LJCY00000000 and LJDD00000000 for C. 
cubensis and C. deuterocubensis, respectively.

MATERIALS AND METHODS

Genomic DNA was extracted using a modi ed protocol 
(Steenkamp et al. 1999) from isolate CMW 10028 
(Chrysoporthe cubensis) and CMW 8650 (C. deuterocubensis) 
mycelium obtained from 7-d-old fungal cultures. The Illumina 
MiSeq paired-end sequencing protocol at the Agricultural 
Research Council (ARC, South Africa) was used to obtain 

whole genome sequence data. To assemble the paired-
end MiSeq sequences, CLC Genomics Workbench v. 7.5.1 
(CLCBio, Aarhus, Denmark) was used. The assemblies were 
subsequently scaffolded using SSPACE v. 2.0 (Boetzer et 
al. 2011), which included unused MiSeq reads from the CLC 
Genomics Workbench assembly. The AUGUSTUS (Stanke & 
Morgenstern 2005) protein coding gene prediction software 
was used for de novo annotation of protein coding gene models 
using Neurospora crassa and Fusarium graminearum as 
references. Genome completeness was assed using BUSCO 
(Benchmarking Universal Single-Copy Orthologs) which 
utilizes single-copy orthologs to predict genome completeness 
(Simão et al. 2015).

RESULTS AND DISCUSSION

The approximate size of the Chrysoporthe cubensis genome 
was 42 624 564 base pairs (bp) including gaps, while the 
C. deuterocubensis assembly was 43 969 123 bp in size. 
These gures were calculated from 989 and 2 599 scaffolds 
for C. cubensis and C. deuterocubensis, respectively. 
From the AUGUSTUS analysis, 12 435 gene models were 
predicted from the C. cubensis genome, while 13 098 gene 
models where predicted in the C. deuterocubensis genome. 
Despite the differences observed in the assembly statistics, 
the CEGMA analysis for genome completeness in both C. 
cubensis and C. deuterocubensis was predicted at 95.16 %.

Compared to the closely related C. austroafricana 
genome, that of C. cubensis was slightly smaller, while the 
C. deuterocubensis genome was slightly larger. Similarly, 
C. cubensis had fewer predicted gene models than either 
C. austroafricana or C. deuterocubensis (Table 1). In terms 
of gene content, the Chrysoporthe spp. genomes were 
slightly larger than that of the distantly related Cryphonectria 
parasitica (43.9 Mb, 11 184 gene models) (http://genome.
jgi.doe.gov/Crypa2/Crypa2.info.html) although the genome 
sizes were relatively close, and the model lamentous fungi, 
Neurospora crassa (39.9 Mb, 10 082 gene models) (Galagan 
et al. 2003) and Magnoporthe grisea (40.3 Mb, 11 109 gene 
models) (Dean et al. 2005).

The signi cance of differences observed in genome size 
and the number of predicted genes among the Chrysoporthe 
species is not known. However, it might be speculated that 
their geographical distribution could have played a role in the 
evolution of these genomes. The availability of these genomes 
will make it possible to answer such phylogeographic 

Table 1. Comparison of whole genome sequencing assembly features for Chrysoporthe cubensis, C. Deuterocubensis, and  
C. austroafricana (Wing eld et al. 2015).

Measure C.  austroafricana C. deuterocubensis C. cubensis 
(CMW 2113) (CMW 8650) (CMW 10028)

Genome size 44 669 169 43 969 123 42 624 564

GC 53.9 % 55 % 54.9 %

Contigs 6 416 6 500 3 326

Scaffolds (SSPACE) 3 232 2 574 954

Gene models (Augustus) 13 484 13 772 13 121

Completeness (BUSCO) 94 % 95 % 94 %
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questions and will aid in addressing questions relating to the 
biology of Chrysoporthe species.

Authors: 
E.T. Steenkamp, and N. A. van der Merwe*

*Contact: albe.vdmerwe@up.ac.za

IMA Genome-F 5C

Draft nuclear genome sequence 
for Davidsoniella virescens, the 
causal agent of sapstreak disease 
in hardwood trees
The newly recognized genus Davidsoniella (de Beer et al. 2014) 
includes species previously accommodated in the Ceratocystis 
coerulescens s. lat. clade. Davidsoniella virescens is a tree 
pathogen that infects hardwood trees such as Acer saccharum 
(sugar maple) in eastern North America (Davidson 1944). This 
fungus is highly pathogenic to sugar maple in plantations, where 
it feeds on the sugars and other carbohydrates in the wood of 
the trees (Bal et al. 2013). The disease caused by D. virescens 
is commonly referred to as sapstreak and the fungus affects 
the internal wood chemistry where it has been implicated in 
the production of volatiles that can enhance the growth of other 
fungi (Wargo & Harrington 1991).

The aim of this study was to assemble a draft nuclear 
genome sequence of D. virescens, which would ultimately 
allow for comparative studies with other sequenced genomes 
in Ceratocystidaceae. The genomes of seven other species of 
Ceratocystidaceae are publically available to aid with such a 
comparative analyses. These include , 
a pathogen affecting sweet potatoes (Wilken et al. 2013); the 
canker and wilt disease causing C. albifundus, occurring on 
Acacia mearnsii trees (van der Nest et al. 2014a); the mango 
wilt pathogen, C. manginecans (van der Nest et al. 2014b); 
species in the related genus Huntiella, H. moniliformis and 
H. omanensis, saprobic fungi usually found on freshly cut or 
wounded logs (van der Nest et al. 2014a), the causal agent of 
black scorch disease in date palms, Thielaviopsis punctulata 
(Wing eld et al. 2015) and the plane tree pathogen C. platani 
(Belbahri 2015). Two additional Ceratocystidaceae genomes, 
those for C. eucalypticola and Thielaviopsis musarum, are 
included in this issue and collectively, these will add value 
to the comparative analysis of the genomes across this 
family. Understanding the general biology of D. virescens will 
further assist in developing a deeper understanding of sap 
streak and potentially contribute to disease management 
strategies. 

SEQUENCED STRAIN

USA: New Hampshire:  isol. ex Acer saccharum, Aug. 1987, 
D. Houston (CMW 17339 = CBS 130772; PREM 61293 – 
dried culture). 

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The Whole Genome Shotgun project of the Davidsoniella 
virescens genome has been deposited at DDBL/EMBL/
GenBank under the accession no. LJ U00000000. The 
version described in this paper is version LJ U01000000.

METHODS

Davidsoniella virescens isolate CMW 17339 was used in this 
study. Cultures were grown at 25 °C on 2 % malt extract agar 
(MEA: 20 % w/v, Biolab, Midrand, South Africa) supplemented 
with 100 μg/L thiamine. Total genomic DNA was isolated 
from 2-wk-old cultures using a phenol-chloroform method 
previously described (Roux et al. 2004). Sequencing was 
carried out on the Genomics Analyzer IIx platform (Illumina) 
at the Genome Centre (University of California at Davis, CA). 
Paired-end libraries with insert fragments of 350 and 600 
bases were used to generate the read lengths of 100 bases. 
CLCBio Genomics workbench software v. 7.5.1 (CLCBio, 
Aarhus, Denmark) was used for quality assessment and 
de novo assembly. Poor-quality reads (limit of 0.05) and/or 
terminal nucleotides were discarded. The remaining reads 
were assembled de novo using a word size of 64 with a 
bubble size of 100 base pairs. Scaffolding with an estimated 
pair distance of 99 to 562 base pairs was performed by 
mapping raw reads back to the contigs. Only contigs greater 
than 1000 bases were retained. Predictions of open reading 
frames (ORFs) based on the gene model for Fusarium 
graminearum (http://bioinf.uni-greifswald.de/augustus) were 
made using AUGUSTUS (Stanke et al. 2006). The quantitative 
assessment of the genome assembly completeness was 
assessed against the Benchmarking Universal Single-Copy 
Orthologs software program, BUSCO (Simão et al. 2015) 
using contigs greater than 1000 bases in length.

RESULTS AND DISCUSSION

Davidsoniella virescens had an estimated nuclear genome 
size of 33 645 160 bases. The N50 value was determined to 
be 118 189 bases generating a mean GC content of 44.50 %. 
A total of 563 contigs were produced from the CLCBio 
assembly, of which 561 were retained after excluding the 
mitochondrial scaffolds. The AUGUSTUS gene prediction 
pipeline estimated 6 953 ORFs. This draft genome assembly 
had a BUSCO completeness score of 97 % indicating that 
the core eukaryotic genes were present. From this analysis, 
1404 single-copy genes were observed, of which 73 were 
duplicated genes. Of the 1 438 genes searched, only 2.2 % 
were classi ed as fragmented or missing. A gene density 
of 207 ORFs per Mb was observed for the 6 953 genes 
predicted.

Davidsoniella virescens has the largest estimated 
genome size (33 Mb) of all Ceratocystidaceae genomes 
sequenced thus far (Table 2). The dissimilarity in the 
coverage, N50 values and number of contigs can be 
attributed to the different sequencing and assembly 
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platforms used to generate the data (Table 2). The retention 
of the nal number of contigs processed in gene prediction 
tools also differed because some researchers have chosen 
to retain smaller contigs (greater than 500 nucleotides). 
Davidsoniella virescens had a similar GC content and 
genome completeness to the genomes sequenced of the 
other species in Ceratocystidaceae (Table 2). Adding to the 
growing number of sequenced and assembled genomes, 
the D. virescens genome provides a powerful resource to 
aid in its phylogenetic classi cation in Ceratocystidaceae. 
Similar or shared biological features can now be identi ed 
due to the availability of these genomes. 

Authors: K. Naidoo*, C. Trollip, P.M. Wilken,  

*Contact: Kershney.Naidoo@fabi.up.ac.za

IMA Genome-F 5D

Nuclear genome assembly for 
the maize pathogen Fusarium 
temperatum

Fusarium temperatum (formerly F. subglutinans group 1, 
de os et al. 2014) is an important mycotoxin-producing 
pathogen of maize (Scau aire et al. 2011). This fungus is a 
member of the Fusarium fujikuroi complex which includes 
numerous pathogens responsible for destructive diseases 
of many plants (Kvas et al. 2009). Due to the economic 
importance of the complex, the whole genome sequences 
for several of its members have been determined and are 
publicly available. These include F. verticillioides (Fusarium 
Comparative Sequencing Project, Broad Institute of Harvard 
and MIT; http://www.broad.mit.edu), F. circinatum (Wing eld 
et al. 2012), F. fujikuroi and F. mangiferae (Wiemann et al. 
2013), as well as F. nygamai (Wing eld et al. 2015).

To complement these genomic resources, genetic 
linkage maps for some of these fungi are also available 
(Jurgensen et al. 2002, de os et al. 2007). For example, 
a genetic linkage map available for a hybrid cross between 
F. circinatum and F. temperatum (de os et al. 2007) has 
been used as a framework in the analyses of certain 
loci and traits in these fungi (de os et al. 2011, 2013). 
Most recently, an analysis of the genomic architecture of 
species in this complex, allowed the anchoring of this 
genetic linkage map to the genomic sequence data for F. 
verticillioides and F. fujikuroi (de os et al. 2014). The aim 
of this study was therefore to determine the whole genome 
sequence for the other parent (F. temperatum) in this hybrid 
cross. The availability of genome data for this fungus would 
allow comparisons to the other sequenced members of 
the F. fujikuroi complex as well as contribute to improving 
our knowledge of the genetic processes and properties 
underlying the biology of these important fungi.

SEQUENCED STRAIN

Mexico: Texcoco: isol. Zea mays ssp. mexicana seeds 
(teosinte), Nov. 1996, A.E. Desjardins, R.D. Plattner & T.R. 
Gordon (CMW 40964, CBS 138287; PREM 61039 – dried 
culture). 

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The Fusarium temperatum genomic sequence data has been 
deposited at DDBJ/EMBL/GenBank under the accession 
LJR00000000. The version described in this paper is version 
LJR01000000.

METHODS

DNA was extracted from Fusarium temperatum grown on ½ 
PDA (Iturritxa et al. 2011). One mate-pair (2 840 bp average 
insert size) and two paired-end (average insert sizes of 213 
and 476 bp) libraries were prepared and subjected to 100 
bp Illumina HiSeq 2000 sequencing at Fasteris (Geneva).  
After removing poor quality reads using CLC Genomics 
Workbench v. 6.5 (CLCbio, Aarhus, Denmark), sequences 
were assembled using ABySS v. 1.3.7 (Simpson et al. 
2009). Closing of gapped regions within the scaffolds was 
done using GapFiller v. 1.11 (Boetzer & Pirovano 2012). The 
completeness of the genome assembly was evaluated using 
CEGMA (Parra et al. 2008) and putative open reading frames 
(ORFs) were predicted using AUGUSTUS (Hoff & Stanke 
2013) together with the gene models for F. graminearum and 
cDNA data from the closely related F. circinatum (Wing eld 
et al. 2012). By making use of MUMmer v. 3.22 (Kurtz et al. 
2004), the F. temperatum scaffold sequences were compared 
to the chromosomes of two other sequenced members in the 
F. fujikuroi complex, F. fujikuroi (Wiemann et al. 2013) and 
F. verticillioides (Fusarium Comparative Sequencing Project) 
(De os et al. 2014).

RESULTS AND DISCUSSION

Assembly of 188 294 812 good quality reads yielded a draft 
genome for Fusarium temperatum that consisted of 45 
458 781 bp with 414x coverage. This assembly consists of 
43 scaffolds with an N50 of 4 506 647 bp and an average 
scaffold size of 1 057 181 bp. Based on the CEGMA analysis, 
this draft genome is 97.38 % complete (Parra et al. 2008). 
The GC content is 47 %. The assembly contains 14 284 
putative ORFs with an average length of 1576 bp and an 
average density of 314 ORFs/Mb. These genome statistics 
for F. temperatum are comparable to those of the other 
sequenced Fusarium members (Fusarium Comparative 
Sequencing Project, Wing eld et al. 2012, 2015, Wiemann et 
al. 2013), which highlights the genomic similarities amongst 
the members in the F. fujikuroi complex.

Sequence comparisons of the sixteen largest scaffolds 
(which accounts for 99.56 % of the total genome size) to 



IMA Genome – F5
A

R
TIC

LE

499V O L U M E  6  ·  N O .  2  

the information for the F. verticillioides and F. fujikuroi 
genomes suggests that these scaffolds likely make up the 
12 chromosomes predicted for species in the F. fujikuroi 
complex (Xu et al. 1995). This was further illustrated 
by the alignments of the F. temperatum scaffolds to the 
chromosome sequences for F. verticillioides and F. fujikuroi 
(Fig. 1). These alignments also con rmed the reciprocal 
translocation in F. temperatum and F. circinatum observed by 
de os et al. (2014) between chromosomes 8 and 11 (Fig. 1). 
The subtelomeric regions missing from chromosome 4 in F. 
fujikuroi (Wiemann et al. 2013) are present in F. temperatum 
(Fig. 1B), con rming that the shortened chromosome 4 is F. 
fujikuroi-speci c.

Like F. verticillioides, F. temperatum also harboured 
the large inversion previously reported in chromosome 11 
between F. verticillioides and F. fujikuroi (Wiemann et al. 
2013, de os et al. 2014) (Fig. 1B), although F. temperatum 
appears to have an additional inversion in this chromosome 
when compared to F. verticillioides and F. fujikuroi (Fig. 1). 
Sequence comparisons also revealed that chromosome 12 
is present in this F. temperatum assembly, albeit 1.42 times 
larger than its counterpart in F. fujikuroi (Wiemann et al. 
2013). Within the F. fujikuroi complex, chromosome 12 has 
also been shown to be dispensable as well as strain-speci c 
(Xu et al. 1995, Jurgenson et al. 2002, Ma et al. 2010, 
Wiemann et al. 2013, van der Nest et al. 2014a). Collectively, 
chromosome 11 and 12 therefore seems to be the most 
variable of the chromosomes in this complex. The addition of 
the whole genome sequence of F. temperatum, to the other 
sequenced members of the F. fujikuroi complex, would assist 

phylogenomic studies into the evolution and biology of these 
important fungi. 

Authors: 

and E.T. Steenkamp
*Contact: Lieschen.devos@up.ac.za

IMA Genome-F 5E

Draft genome sequence of 
Graphilbum fragrans

Graphilbum is one of six currently recognized genera in 
Ophiostomatales (Ascomycota, Sordariomycetes) (de Beer & 
Wing eld 2013). The genus includes nine named species and 
some undescribed taxa (de Beer & Wing eld 2013). As with most 
other species of Ophiostomatales, species of Graphilbum are 
commonly found associated with coniferous hosts. Graphilbum 
fragrans was rst described in 1954 from Sweden (Mathiesen-
K rik 1954), where it was initially treated in Graphium (as 
G. fragrans). This species was later reported from conifers or 
conifer-infesting beetles from various other countries including 
Australia, Canada, China, New ealand, Korea, Poland, South 
Africa, Spain, and the USA (Harrington et al. 2001, Jacobs et 
al. 2003, hou et al. 2006, Kim et al. 2007, Romon et al. 2007, 
Paciura et al. 2010, Jankowiak & Bila ski 2013).

Fig. 1. Whole genome comparisons of (A) Fusarium verticillioides to F. temperatum, and (B) F. fujikuroi to F. temperatum. Dotplot alignments of F. 
verticillioides scaffolds (placed into chromosomes; de os et al. 2014) and F. fujikuroi chromosomes (Wiemann et al. 2013) against the 16 largest 
F. temperatum scaffolds. Forward matches are indicated by red dots, reverse matches with blue dots. The black circles show the reciprocal 
translocation between chromosome 8 and 11 – the single scaffold representing chromosome 11 has a portion that aligns to chromosome 8 and 
a portion that align to chromosome 11 of F. verticillioides and F. fujikuroi. Solid arrows are indicative of inversions in F. temperatum, while the 
dotted arrow indicates an inversion in F. fujikuroi, when compared to the two other Fusarium spp.

Fusarium temperatum chromosomesFusarium temperatum chromosomes
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The availability of whole genome sequences and recent 
advancements in genome analyses have contributed to 
a better understanding of the biology, pathogenicity and 
evolutionary processes in fungi. A number of genomes 
of species in Ophiostomatales have been sequenced 
and analysed, however, these include only species in 
Leptographium, Ophiostoma, and Sporothrix (DiGuistini et al. 
2011, Haridas et al. 2013, Khoshraftar et al. 2013, Teixeira 
et al. 2014, van der Nest et al. 2014, Wing eld et al. 2015). 
The aim of this study was to generate the genome sequence 
for G. fragrans, the rst genome available for the genus 
Graphilbum and thus to provide a basis for comparison 
between the genera of Ophiostomatales.

SEQUENCED STRAIN

South Africa: Mpumalanga: from Hylastes angustatus 
infesting Pinus patula, 1999, X.D. hou (culture CMW 19357 
= CBS 138720; PREM 61294 – dried culture).

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBER

The genomic sequence of Graphilbum fragrans (CMW 
19357, CBS 138720) has been deposited at DDBJ/EMBL/
GenBank under the accession LLKO00000000. The version 
described in this paper is version LLKO01000000.

METHODS

Methods for DNA extraction, genome sequencing, assembly 
and annotation were similar to those used for Leptographium 
lundbergii (Wing eld et al. 2015). Total genomic DNA was 
extracted following the protocol of Duong et al. (2013). Two 
pair-end libraries (350 bp and 530 bp average insert size) 
were prepared and sequenced using the Illumina HiSeq 
2000 platform. Obtained reads were rst subjected to quality 
ltering and trimming, followed by de novo assembly using 

CLC Genomics Workbench v. 8.0.1 (CLCBio, Aarhus, 
Denmark). Genome completeness was estimated using 
BUSCO (Simão et al. 2015). Total number of gene models 
was predicted using the MAKER genome annotation pipeline 
(Cantarel et al. 2008).

RESULTS AND DISCUSSION

Over 26.2 million reads were obtained after ltering and 
trimming. De novo assembly using CLC Genomic Workbench 
resulted in 80 scaffolds that were over 500 bp in size. The 
assembly had a N50 value of 973.6 kb and the longest 
scaffold was 2.66 Mb. The genome of Graphilbum fragrans 
was estimated to be 34.26 Mb, with the mean GC content 
of 55.7 %. We assessed the completeness of the obtained 
genome by running BUSCO on the resulting assembly 
using the fungal reference dataset and obtained BUSCO 
values of C: 97 % [D: 5.8 %], F: 1.8 %, M: 0.6 %, n: 1348 

(C: complete, [D: duplicated], F: fragmented, M: missed, 
n: genes), indicating that the obtained genome sequence 
should cover most of the organism’s gene space. Genome 
annotation using MAKER resulted in 10 633 gene models 
ltered based on MAKER max build (8 942 gene models if 

MAKER standard build was applied) (Campbell et al. 2014). 
Of 10 633 gene models predicted using MAKER max build, 
8102 were multi-exonic genes, mean intron length was 121.1 
bp and mean exon length was 552.8 bp. The genome of G. 
fragrans, which is the rst genome reported for Graphilbum, 
represents a useful resource for various comparative genomic 
and systematic studies in Ophiostomatales.

Authors: 

*Contact: Tuan.Duong@fabi.up.ac.za

IMA Genome-F 5F

Draft genome sequence of 
Penicillium nordicum DAOMC 
185683
Penicillium nordicum is classi ed in the subgenus Penicillium 
section Fasciculata (Houbraken & Samson 2011) and is 
commonly isolated from cheese, nuts and other fat and 
protein rich substrates like salami and ham (Frisvad & 
Samson 2004). The importance of this fungus relates to its 
production of the regulated mycotoxin ochratoxin A (OTA), 
which is hepatoxic, nephrotoxic, teratogenic and immunotoxic 
in animals (Pitt et al. 2012), known to promote oxidative DNA 
damage by the production of reactive oxygen species and to 
generate DNA adducts (Hadjeba-Medjdoub et al. 2012), and 
is classi ed as a possible human renal carcinogen (group 2B) 
by the International Agency for Research on Cancer (IARC, 
Pitt et al. 2012). 

OTA is also produced by P. verrucosum, the sister species 
to P. nordicum (Samson et al. 2004), and by several species 
of Aspergillus ( isagie et al. 2014a). Despite the importance 
of OTA in grain, coffee and grape products, its biosynthetic 
pathway has yet to be fully elucidated. However, there is 
evidence that a gene cluster including an alkaline serine 
protease, a polyketide synthase and a non-ribosomal peptide 
synthase may play a role in OTA production in P. nordicum 
(Karolewiez & Geisen 2005, Geisen et al. 2006). In this study, 
we sequenced and annotated a genome draft of P. nordicum 
DAOMC 185683, as part of our investigation of genes 
regulating OTA production in Penicillium species.

SEQUENCED STRAIN

Canada: Alberta: Brooks, isolated from Lycopersicon 
esculentum (tomato), collected and isolated 24 Jan. 1983, 
R.J. Howard GT-78. (DAOMC 185683). Originally identi ed 
as Penicillium aurantiogriseum by John D. Bissett; re-
identi ed as P. nordicum by Keith A. Seifert in 2012. 
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NUCLEOTIDE SEQUENCE AND RAW READS 
ACCESSION NUMBERS

This Whole Genome Shotgun project was deposited at DDBJ/
EMBL/GenBank under accession LHQQ00000000. The 
version described in this paper is version LHQQ01000000. 
Raw reads were deposited in NCBI SRA (http://www.ncbi.
nlm.nih.gov/sra) accession number SRR2146067.

DNA EXTRACTION, WHOLE GENOME 
SEQUENCING AND ASSEMBLY

Penicillium nordicum DAOMC 185683 was grown on 
Blakeslee’s malt extract agar for 7 d at 25 °C ( isagie et 
al. 2014b). To make a spore suspension, the colonies were 
ooded with 5 mL of sterile distilled water. One mL of this 

spore suspension was inoculated in 100 mL of Blakeslee’s 
malt extract broth and was left shaking at 300 rpm at 25 °C 
for 6 d. To obtain fungal tissue for DNA extraction, cells were 
removed from the liquid culture by ltration. DNA was extracted 
with the OmniPrep kit for fungi (G-Biosciences) following the 
manufacturer’s protocol. Whole-genome sequencing (paired-
end with 101 bp) was performed on an Illumina HiSeq 2500 
with TrueSeq 3 chemistry at the National Research Council 
Canada in Saskatoon (Saskatchewan, Canada).

The quality of genomic reads was determined with FastQC 
v. 0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Using fastx_trimmer (part of the FASTX-Toolkit 
v.0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/)), 10 bases 
from the 5’ end were trimmed to yield higher quality reads of 
91 bp. Adaptor sequences were removed with Trimmomatic 
v. 0.33 (Bolger et al. 2014). Prior to genome assembly, the 
optimal k parameter was calculated with KmerGenie v. 1.6950 
(Chikhi & Medvedev 2014). Error correction was performed on 
the trimmed reads with BayesHammer (Nikolenko et al. 2013). 

De novo genome assembly was performed with SPAdes 
v. 3.5.0 (Bankevich et al. 2012) with the option to correct 
mismatches and short indels enabled. Scaffolds shorter than 
1000 bp were discarded. Species identi cation was con rmed 
by comparing the internal transcribed spacer (KJ834513) and 
beta-tubulin (KJ834476) barcode sequences of P. nordicum 
( isagie et al. 2014b) against the assembled genomic 
scaffolds using BLASTn. Assembly statistics were generated 
with QUAST v. 2.3 (Gurevich et al. 2013).

The assembly was assessed by alignment of the 
corrected reads onto the scaffolds using Bowtie2 v. 2.0.0 
(Langmead & Salzberg 2012). Alignments produced by 
Bowtie2 in SAM format were converted to sorted BAM 
format by SAMtools v. 0.1.19 (Li et al. 2009) and statistics for 
nucleotide coverage were generated with Qualimap v. 2.1 
(Garcia-Alcalde et al. 2012). To evaluate the completeness 
of our genome assembly, CEGMA v. 2.5 (Parra et al. 
2007) was run on the scaffolds to detect the percentage of 
conserved eukaryotic genes (CEG’s) and BUSCO v. 1.1b1 
(http://busco.ezlab.org/) was run on the scaffolds using the 
fungal pro le (Dec. 19, 2014 release) to detect Universal 
Single-Copy Orthologs.

Genome annotation was carried out using webAugustus 
(Hoff & Stanke 2013) running Augustus v. 3.0.3 (Stanke 

et al. 2006). Predicted proteins were compared against 
UniProt/Swiss-Prot manually curated fungal protein data set 
by BLASTp v. 2.2.28+. The BLAST hits with e-values less 
than 1.0E-100 and similarity hits  90 % were assumed to be 
orthologs and were given protein names in the annotation set. 
Genome Annotation Generator (http://genomeannotation.
github.io/GAG/) and tbl2asn (http://www.ncbi.nlm.nih.gov/
genbank/tbl2asn2/) were used to validate annotations.

RESULTS AND DISCUSSION

Approximately 22 million reads, comprising 2.2 Gbp of data, 
were assembled into 996 scaffolds resulting in an assembly 
of 30.8 Mb with a GC content of 47.8 %. The N50 value was 
92.3 Kb and the longest scaffold was 391 Kb. The median 
nucleotide coverage across the whole assembly was 57x. 
The assembled genome had a CEGMA score of 96.8 % 
when calculated from the complete gene set and 98.4 % 
when calculated from both partial and complete gene sets. 
Assessment of the completeness of the genome using 
BUSCO groups for fungi resulted in values of C: 99 % , 
[D: 6.8 %], F: 0.7 %, M: 0.1 %, n: 1438 (C: complete, [D: 
duplicated], F: fragmented, M: missed, n: genes). Therefore, 
the assembled genome covered most of the organism’s 
gene content. After annotation and validation, the genome 
contained 12 959 protein-coding genes. Of all suggested 
gene models, 12 448 were complete (96.0 %), but 511 gene 
models lacked a start codon, stop codon or both (4.0%). 
Mean gene length was 1388 bp, mean exon length was 437 
bp and mean intron length was 85 bp. One other P. nordicum 
genome is accessioned in NCBI (JNNR), sequenced from 
a strain isolated from crop elds in Karlsruhe, Germany 
(UASWS BFE487). A comparative analysis has not yet been 
published, but as with our strain, the genome size was 30.4 
Mb contained in 915 scaffolds, but the genome has less than 
half the coverage (at 20 ) and only 46 genes were annotated.

This draft genome of a North American strain of P. 
nordicum, the rst record of this species from Canada, 
represents a useful resource for biogeographical and 
comparative genomic studies of OTA (ochratoxin A) producing 
species of Penicillium, Aspergillus, and other related fungi. It 
will facilitate future gene knockout studies aiming to uncover 
the full OTA biosynthetic pathway in P. nordicum. 

Authors: H.D.T. Nguyen* and K.A. Seifert
*Contact: hai.nguyen.1984@gmail.com

IMA Genome-F 5G

Draft genome sequence of the 
banana pathogen Thielaviopsis 
musarum
 
Thielaviopsis musarum is a pathogen of banana (Mitchell 
1937, Riedl 1962) that typically infects banana fruits during 
maturation. This is especially true under conditions of high 
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humidity, darkness and moderately steady temperatures 
(Riedl 1962). 

Thielaviopsis musarum was previously treated as 
Ceratocystis musarum, but was transferred to Thielaviopsis 
as part of a major revision of the family Ceratocystidaceae 
by de Beer et al. (2014). The fungus was rst reported as a 
new variety of C. paradoxa causing stem-end rot of banana 
in Australia (Mitchell 1937). Riedl (1962) isolated a similar 
fungus from banana stems in ienna although the plant 
material probably originated elsewhere, and described it as 
a new species distinct from C. paradoxa. Although some 
authors regarded the species from banana as distinct from C. 
paradoxa (de Hoog 1974, Nag Raj & Kendrick 1975), others 
viewed C. musarum as a synonym of C. paradoxa (Upadhyay 
1981). These disputes have, however, been settled with 
DNA-based studies (Harrington 2009, de Beer et al. 2013) 
and T. musarum is now recognised as a distinct species in 
Thielaviopsis. The aim of this study was to sequence and 
assemble the whole genome of an isolate of T. musarum. 
This was undertaken to provide information allowing for 
the recognition of fungal genes that are associated with 
pathogenicity and other important biological properties in 
members of Ceratocystidaceae. 

SEQUENCED STRAIN

: on Musa sp., T.W. Canter Vischer (PREM 
60962 – epitype, dried culture;  CMW 1546 – ex-epitype 
culture). 

NUCLEOTIDE SEQUENCE ACCESSION 
NUMBERS

This Whole Genome Shotgun project has been deposited at 
DDBJ/EMBL/GenBank under the accession LKBB00000000. 
The version described in this paper is version LKBB00000000.

METHODS

Isolate CMW1546 (CBS 139399) of Thielaviopsis musarum 
was grown in malt extract agar (MA). High quality DNA was 
isolated from harvested mycelium (Raeder & Broda 1985) and 
sequencing was performed using the Genomics Analyzer IIx 
platform (Illumina) using paired-end libraries with insert sizes 
of approximately 350 and 600 bases. Reads with an average 
length of 97 bases were quality-trimmed using the software 
package CLC Genomics Workbench v. 6.0.1 (CLCBio, 
Aarhus, Denmark). The quality- ltered reads were assembled 
using the elvet de novo assembler ( erbino & Birney 2008), 
with an optimized k-mer size of 77. We used SSPACE v.2.0 
(Boetzer et al. 2011) to assemble contigs into scaffolds and 
gaps were lled using GapFiller v. 2.2.1 (Boetzer & Pirovano 
2012). The completeness of the assembled genome was 
assessed using the Benchmarking Universal Single-Copy 
Orthologs (BUSCO) tool, (Software v. 1.1b1 of May 2015; 
Simão et al. 2015). The BUSCO analysis was performed on 
all contigs >1 kb, making use of the fungal lineage dataset. 

AUGUSTUS (Hoff & Stanke 2013) and the gene models for 
Fusarium graminearum were used to identify putative open 
reading frames (ORFs).

RESULTS AND DISCUSSION

The Thielaviopsis musarum draft genome had an estimated 
size of 28 493 324 bases, a 95  coverage, N50 contig 
size of 103 017 bases and a mean GC content of 49.17 
%. The assembly was composed of 672 contigs, of which 
541 were larger than 1 kb. Based on the BUSCO analysis, 
this assembly is 96 % complete. A total of 1392 single-copy 
BUSCO orthologs were present, of which 78 were duplicated. 
Out of a possible 1438 BUSCO groups searched, 11 BUSCO 
groups were missing or fragmented. The nal assembly was 
predicted to encode 6 963 putative ORFs at a density of 244 
ORFs/Mb.

The T. musarum genome appears to be relatively small 
and harbours fewer genes than other Sordariomycetes (e.g., 
Fusarium fujikuroi, 43.8 Mb with 14813 ORFs; Cryphonectria 
parasitica, 43.9Mb with 11184 ORFs) (Wiemann et al. 2013; 
http://genome.jgi.doe.gov/Crypa2/Crypa2.home.html). The 
genome size of T. musarum was, however, in the same range 
of some species of Ceratocystidaceae such as Ceratocystis 
manginecans (of 31.7 Mb with 7494 ORFs), C. albifundus 
albifundus (27.1 Mb with 6967 ORFs) (29.4 
Mb with 7266 ORFs), Huntiella omanensis (31.5 Mb with 
8395 ORFs) and H. moniliformis (25.5 Mb with 6832 ORFs) 
(Wilken et al. 2013, van der Nest et al. 2014a, b).

The Thielaviopsis musarum genome was only marginally 
larger than that of T. puntulata (accession number: 
LAE 00000000) with its 28.1 Mb genome. However, T. 
puntulata was reported to encode 5480 ORFs (Wing eld et 
al. 2015) as opposed to the 6963 of T. musarum, suggesting 
a higher ORF density for the latter (i.e., 244 ORFs/Mb for T. 
musarum vs. 195 ORFs/Mb for T. puntulata). Future research 
should, therefore, consider whether these differences in 
genome size and ORF density could be ascribed to differences 
in the methodologies used to sequence and annotate the 
respective genomes. Overall, these genomes will provide 
interesting perspectives regarding the development and 
evolution of important biological traits in these fungi. 

Authors: M.A Sayari*, C. Trollip, K. Naidoo, 

*Contact: Mohammad.Sayari@fabi.up.ac.za
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