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ABSTRACT

True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of
organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and
animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses
challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification
of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the
combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when
feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both.
Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is
currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed
spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are
increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence
similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based
phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In
metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications
must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly
documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve
molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding
markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3)
improve curation of sequence labels in primary repositories and substantially increase the number of sequences
based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In
parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the
future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important
strategy to catalog the global diversity of fungi and establish initial species hypotheses.
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INTRODUCTION
Fungi are eukaryotic heterotrophic organisms that
mostly grow with elongated, polarized cells (hyphae)
or in the form of budding cells (yeast-like), reprodu-
cing via meiotic and/or mitotic spores. The fungal
lifestyle evolved several times independently in the
Tree of Life (Fig. 1). The majority of the known spe-
cies (close to 99%) are true fungi (Fungi), whereas
about 0.7% represent Eumycetozoa and other groups
of slime molds in the Amoebozoa (supergroup Amor-
phea), and another 0.7% the Oomycota in the Strami-
nipila (Stephenson et al. 2008; Beakes and Thines
2017; Hawksworth and Lücking 2018; Lado and Elias-
son 2017; Willis 2018; Burki et al. 2019; Wijayawar-
dene et al. 2020). Fungi rank third among eukaryotic
kingdoms in terms of known species richness, with
approximately 140,000 species, but the total number
has been predicted as between 2.2 and 3.8 million,
with a mean of 3 million (Hawksworth and Lücking
2018), with other estimates as low as 700,000 and as
high as 12 million (Schmit and Mueller 2007; Black-
well 2011; Vu et al. 2019).
Fungi in the broad sense are ubiquitous in terres-

trial, freshwater and marine ecosystems (Dix and
Webster 1995; Mueller et al. 2004; Rodriguez et al.
2009; Thines 2014; Asplund and Wardle 2017; Buz-
zini et al. 2017; Glime 2019; Jones et al. 2019). They
carry out important processes as decomposers of or-
ganic material contributing to nutrient cycles, para-
sites controlling host population structure, anaerobic
gut mutualists, and mutualists with autotrophic or-
ganisms, e.g. the various forms of endophytes, lichens
and mycorrhizae. Fungi have economic impact as
plant and animal (including human) pathogens, in the
biological control of crop pests, in the food and
pharmaceutical industry, as edible mushrooms, and
are also applied as indicators of environmental health
(May and Adams 1997; Nimis et al. 2002; Crawford
2019; Hyde et al. 2019).
Accurate and precise identification of fungi is chal-

lenging. Compared to other multicellular eukaryotes,
fungi have simple body plans and diagnostic features
are generally limited to their sexual and asexual
spore-producing bodies, requiring microscopic exam-
ination (Beakes and Thines 2017; Nagy et al. 2017;
Lücking 2019). Some fungi are only known from
vegetative structures, rendering traditional approaches
to classification nearly impossible (e.g. Koch et al.
2017, 2018). Precise identification of fungi thus re-
quires removal from their habitat and careful investi-
gation in the laboratory. Exceptions would be well-
established taxa which exhibit features discernable in
the field, such as the lung lichen, Lobaria pulmon-
aria, the split gill mushroom, Schizophyllum commune
(Fig. 1ad), or the familiar pathogen causing tar spot
on Acer leaves, Rhytisma acerinum (Fig. 1s). However,
even in such cases, unrecognized cryptic speciation
may lead to erroneous phenotype-based identifica-
tions, as shown by the recently described Rhytisma
americanum, which had long been mistaken for R.
acerinum (Hudler et al. 1998). Even if only a single,
morphologically well-defined species is recognized,
such as S. commune, its genetic structure may be
complex (James et al. 2001). This raises questions
about species limits and at what level of precision
phylogenetic complexity should be recognized taxo-
nomically and, by extension, incorporated in identifi-
cation tools.
The non-reproductive phase of fungi, typically form-

ing hyphae or budding (yeast-like) cells, or plasmodia
in slime molds, is usually cryptic, exhibiting little use-
ful diagnostic information, except for classification at-
tempts based on fungal cultures (Nobles 1965;
Stalpers 1978; Pazouki and Panda 2000; Kurtzman
et al. 2011). In contrast, many lichen-formers can be
identified to species level in the absence of spore-
producing structures, due to their persistent thalli
(Honegger 2012). Both the higher classification of fungi
and the delimitation of species have been notoriously diffi-
cult and underwent dramatic changes with the develop-
ment of molecular approaches (Taylor et al. 2000; James
et al. 2006; Hibbett et al. 2007, 2016; Schoch et al. 2009;
Crous et al. 2015; Spatafora et al. 2016; Beakes and Thines
2017; Hawksworth and Lücking 2018; Tedersoo et al.
2018a). A further dimension has been added through en-
vironmental sequencing, in which the phenotype of de-
tected lineages is unknown except for ecological
preferences inferred from metadata (O'Brien et al. 2005;
Bellemain et al. 2013; Sirohi et al. 2013; Menkis et al.
2014; Ohsowski et al. 2014; Grube et al. 2017; Lücking
and Hawksworth 2018; Thines et al. 2018; Nilsson et al.
2019; Vu et al. 2019; Davison et al. 2020).
Due to the heterogeneity of approaches to fungal

taxonomy and the complexity of lineage-dependent
evolutionary processes, there are no simple strategies
to unambiguously identify fungi (Grube et al. 2017;
Steencamp et al. 2018; Inderbitzin et al. 2020). Best
practice depends on the group in question and the
required level of precision (Raja et al. 2017a). Many
macrofungi, some microfungi, and many lichen-
formers can be identified using phenotype characters
once a reliable taxonomic framework has been estab-
lished. However, the majority of fungi, especially asex-
ual forms, yeasts and other basal lineages, and those
important in fields such as plant pathology and med-
ical mycology, require time-consuming and labour-
intensive methods that may include culturing, DNA
barcoding and phylogenetic analysis, as well
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discipline- or taxon-specific approaches, such as
physiological profiling (see below).
Two fundamental aspects of identification are accuracy

and precision (Vu et al. 2019). To illustrate this concept:
accuracy would identify a mushroom as either a true
(Cantharellus cibarius s.lat.) or a false chanterelle
(Hygrophoropsis aurantiaca), two unrelated species in
different fungal orders. Once verified that the query
taxon is a true chanterelle, precision would determine
the exact species, as Cantharellus cibarius s.lat. Repre-
sents several more narrowly defined taxa (Buyck and
Hofstetter 2011; Foltz et al. 2013; Leacock et al. 2016).
While accuracy is indispensable for identifications, preci-
sion depends on the purpose. The latter is particularly
critical for legal compliance and regulatory controls, in
biosafety regarding clinical diagnosis and subsequent
recommendations for disease management of plant and
human/animal pathogens, in food security (edible mush-
rooms, FDA approved species), for quarantine regula-
tions (plant pests), industrial usage, the distribution of
dual-use organisms (toxic fungi), or where conservation
measures are being administered (Druzhinina et al.
2010; Dahlberg and Mueller 2011; Criseo et al. 2015;
Crous et al. 2015; Raja et al. 2017b; Blackwell and Vega
2018; Heim et al. 2018; Frøslev et al. 2019).

SPECIES: FROM CONCEPTS TO IDENTIFICATION
Often conflated, species conceptualization, delimitation,
recognition, identification, and verification involve
largely separate approaches, although they logically
depend on each other (Fig. 2). Ultimately, for accurate
and precise identification in any given fungal group,
an underlying concept to delimit species and evaluate
their diagnostic characters for recognition needs to be
agreed upon before tools for identification and verifi-
cation can be employed (Harrington and Rizzo 1999;
Steenkamp et al. 2018; Inderbitzin et al. 2020).

Concepts
Across the Tree of Life, species concepts are the theoret-
ical basis upon which we recognize and name species;
they play, therefore, a crucial role in the development of
identification tools. For instance, sexual and asexual
morphs in fungi were traditionally named and identified
separately under the concept of dual nomenclature.
With the advent of DNA sequencing and the ability to
match sexual and asexual morphs through sequence
data, this approach was no longer necessary, and dual
nomenclature was replaced by the concept of “one fun-
gus, one name” (Hawksworth 2011; Taylor 2011; Wing-
field et al. 2012; Geiser et al. 2013).
Over 30 concepts have been proposed to delimit

species across the Tree of Life (Mayden 1997; Zachos
2016; Wilkins 2018). All consider one or several of
three fundamental criteria (Fig. 2): genealogical coher-
ence (in particular monophyly), reproductive isolation,
and phenotypic distinctiveness (including autecology;
e.g. Eyualem and Blaxter 2003). Thus, ‘genealogical
concordance species’ and ‘phylospecies’ refer to as-
pects of genealogy. ‘Morphospecies’ (‘phenospecies’)
relate to morphological, anatomical, biochemical or
behavioral features, which by extension also include
autecology (environmental niche space). ‘Biospecies’
and ‘recognition species’ take into account mating
compatibility and reproductive barriers. Special cases
include ‘agamospecies’ (asexual lineages not known to
reproduce sexually) and ‘nothospecies’ (of hybrid ori-
gin). Some concepts integrate criteria of genealogy,
phenotype and/or reproduction, such as ‘cohesion
species’ and ‘evolutionary species’, whereas others aim
at the highest possible resolution, e.g. ‘evolutionary
significant unit’ and ‘least inclusive taxonomic unit’
(Moritz 1994; Wilkins 2018). As a result, different
concepts may result in delimiting species of different
size and complexity (Agapow et al. 2004; Taylor et al.
2006; Yurkov et al. 2015a), which may confound users
employing identification tools based on “competing”
species concepts.
Hawksworth (1996: 32) pragmatically defined fungal

species as “... groups of individuals separated by in-
heritable character discontinuities and which it is use-
ful to give a species name to ...”. Since inheritable
character discontinuities can only be assessed by sim-
ultaneous analysis of phylogenetic relationships and
clade-based phenotype variation, this definition is
largely congruent with ‘phylogenetic taxon species’
(Eldredge and Cracraft 1980; Nelson and Platnick
1981; Wilkins 2018). It is also in agreement with the
‘consolidated species concept’ of Quaedvlieg et al.
(2014). Other terms that have been coined for this
approach are the polyphasic species concept and inte-
grative taxonomy (Vandamme et al. 1996; Yeates
et al. 2011; Goulding and Dayrat 2016; Lücking 2019;
Vinarski 2019). Fungi are no exception to the notion
that species have individual evolutionary histories, and
so aspects of their genealogical coherence, reproduct-
ive isolation and phenotypic distinctiveness may differ.
This implies that there is no single, universal ap-
proach to species delimitation and consequently for
species identification.
The diversity of trophic and reproductive strategies

of fungi and their often complex lifecycles add further
complications. What is perceived as phenotypically
distinct entities may be manifestations of one and the
same fungus, often representing sexual versus asexual
forms (Kendrick 1979; Aoki and O'Donnell 1999;
Covert et al. 2007; Wingfield et al. 2012; Rossman
et al. 2016; Tanaka and Honda 2017; Tanney and
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Miller 2017). Exemplar cases are the rust fungi (Aime
et al. 2018; Kolmer et al. 2018), which can produce
up to seven morphologically and functionally distinct
types of spores (Bruckart et al. 2010). So-called “spe-
cies pairs” in lichens may belong to a single taxon or
exhibit complex phylogenies in which the mode of
reproduction is not necessarily diagnostic (Mattsson
and Lumbsch 1989; Kroken and Taylor 2001; Crespo
and Pérez-Ortega 2009; Crespo and Lumbsch 2010;
Messuti et al. 2016). The same lichen fungus can also
form different vegetative structures depending on the
associated photobiont, resulting in strikingly disparate
“photosymbiodemes” (Armaleo and Clerc 1991; Hög-
nabba et al. 2009; Moncada et al. 2013).

Delimitation
While it is difficult to decide a priori which approach
to species delimitation best applies to a given fungal
group, biological and phenotypic aspects have prac-
tical and theoretical limitations. The phenotypic ap-
proach is limited due to the simplicity of fungal
features, such as spore characters, as homoplasious
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Fig. 1 The diversity of Fungi and fungal-like organisms is staggering, with between 2.2 to 3.8 million species predicted (Hawksworth and Lücking
2018). Identification tools specifically tailored to each group are indispensable to deal with such richness. A–B, Oomycota; C–D, Mycetozoa; E,
Mucoromycota; F–U, Ascomycota; V–AE, Basidiomycota. A, Albugo candida (on Capsella bursa-pastoris). B, Hyaloperonospora thlaspeos-perfoliati (on
Microthlaspi erraticum); for Oomycota, COX1 and COX2 have been proposed as alternative DNA barcodes (Choi et al. 2015). C, Arcyria denudata. D,
unidentified slime mold plasmodium; a portion of the nuSSU, in combination with COX1 and TEF1, has been shown to provide good resolution
to delimit species (Schnittler et al. 2017). E, Phycomyces blakesleeanus (mating). F, Helicoma taenia (conidium). G, Sorokina caeruleogrisea
(ascomata). H, Fusarium duofalcatisporum (conidia); secondary DNA barcodes, such as TEF1, have been proposed to delimit species in this plant-
pathogenic genus (O'Donnell et al. 2015; Al-Hatmi et al. 2016; Xia et al. 2019). I, Placomaronea candelarioides (thallus). J, Xylaria polymorpha
(stromata bearing ascomata). K, Rhytidhysteron columbiense (ascomata); this conspicuous saprotrophic genus contains numerous unrecognized species
based on ITS (Soto-Medina and Lücking 2017). L, Neocosmospora vasinfecta (perithecia); this genus is one example of competing solutions to ranking
clades in Fusarium s.lat. at genus level (Summerell 2019; Sandoval-Denis et al. 2019), a problem that is not resolvable by phylogeny alone (Lücking
2019), but which affects nomenclature of economically important fungi. M, Ophiocordyceps curculionum (stroma growing out of a weevil). N, Cookeina
tricholoma (ascomata). O, basidiomycetous yeast (various members of Cystofilobasidiales) efflux on tree stump (Yurkov et al. 2020). P, Aspergillus sydowii
(culture); fungi of this genus can cause aspergillosis in humans and are identified through a combination of DNA barcoding (TUB2) and high-resolution
melting (HRM) assay (Fidler et al. 2017). Q, Pyrenula subpraelucida (ascospore). R, Pseudopestalotiopsis ixorae (conidium); this is another genus for which
secondary DNA barcodes (TEF1, TUB2) have been proposed (Maharachchikumbura et al. 2012, 2014). S, Rhytisma acerinum (tar spot on Acer); recently, a
separate, near-cryptic North American species was discovered integrating ITS and biological data (Hudler et al. 1998). T, Macgarvieomyces juncicola
(conidiophore with conidia). U, Batistia annulipes (stromata). V, Thelephora terrestris (basidioma).W, Cora imi (thallus); until recently, this genus was
believed to include a single species, but integrative taxonomy combining the ITS barcoding marker and morpho-anatomical and ecological characters
recognizes nearly 200 (Lücking et al. 2014, 2017). X, Cyathus striatus (basidiomata). Y, Ramaria formosa (basidiomata). Z, Campanella caesia
(basidiomata); based on ITS barcoding data, this presumably European taxon is subcosmopolitan, being also found in North America including Mexico,
South America (Colombia; photograph), and Africa (Kenya). AA, Coprinellus disseminatus (basidiomata). AB, Aseroe rubra (basidioma). AC, Tremella
mesenterica (basidioma). AD, Schizophyllum commune (basidiomata); this industrially important taxon includes geographically separated clades based
on the IGS (James et al. 2001). AE. Amanita muscaria (basidioma); according to a three-marker study (ITS, nuLSU, TUB2; Geml et al. 2006), this well-
known mushroom comprises several cryptic species
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evolution and a disjunct between the timing of genea-
logical and phenotypic separation may lead to pheno-
typically cryptic taxa (Carriconde et al. 2008;
Lumbsch and Leavitt 2011; Hyde et al. 2011; Balasun-
daram et al. 2015; Hawksworth and Lücking 2018).
Perceived lack of phenotypical divergence can also
stem from failure to properly observe diagnostic char-
acters (Moncada et al. 2014; Lücking et al. 2017;
Merényi et al. 2017). This is particularly obvious in
microfungi; for instance, Johnston et al. (2017)
showed that 23% of historical Phoma cultures deter-
mined based on phenotype had been misidentified.
Reproductive isolation is emphasized as a key trait in

the biological species concept (Mayr 1942). In the ori-
ginal description of Neurospora, species were recognized
in part based on mating compatibility (Shear and Dodge
1927), long before the term “biological species” was first
applied. However, more often than not it is difficult to
assess reproductive isolation in fungi, and this approach
is largely restricted to select taxa including model organ-
isms (Yarden 2016). Mating is inherently cryptic and
often complex, involving the fusion of minute gametan-
gial elements, an event rarely observed in nature or even
in the laboratory (Kück and Pöggeler 2009; Ni et al.
2011; Ropars et al. 2016; Bruns et al. 2018; Nagel et al.
2018; Li et al. 2020a). There are challenges in the inter-
pretation of mating experiments, as failed mating does
not necessarily prove two lineages to represent different
species. Sexual reproduction of biotrophic lineages
depends on the availability of a suitable host, the absence
of which may result in unsuccessful mating tests (Cai et al.
2011; Yurkov et al. 2015b). Successful mating can also
occur through homothallism or through hybridization be-
tween phylogenetically and morphologically distinct spe-
cies (Sun et al. 2014). Additionally, many fungi do not
appear to reproduce sexually, having lost this ability dur-
ing evolution (Seifert and Gams 2001; Shenoy et al. 2007;
Hyde et al. 2011), although it can sometimes be induced
under laboratory conditions (O'Gorman et al. 2009).
Given these shortcomings, historical reproductive isola-
tion can be documented through a genealogical concord-
ance phylogenetic species recognition (GCPSR) approach,
which identifies shared genealogical partitions between
lineages across multiple loci as evidence of isolation (Tay-
lor et al. 2000). While this approach has been applied in
fungi (Koufopanou et al. 1997; Geiser et al. 1998, 2007;
O'Donnell et al. 2004; Aoki et al. 2019), it does not neces-
sarily identify intrinsic reproductive barriers as the basis
for a lack of genetic exchange, and it may reveal popula-
tions rather than species (Sukumaran and Knowles 2017).
Another approach is the analysis of mating genes to pre-
dict sexual compatibility in fungi (Sun et al. 2014, 2019;
Yurkov et al. 2015b; Diaz-Valderrama and Aime 2016). In
general, reproductively incompatible groups within
phenotypically defined species tend to correlate fairly well
with phylogenetically supported lineages, as observed in
Neurospora (Dettman et al. 2003a, b), Cryptococcus
(Passer et al. 2019), Fusarium (Aoki and O'Donnell 1999;
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O'Donnell et al. 2000), Penicillium (López-Villavicencio
et al. 2010), Lentinellus (Miller and Methven 2000), and
Pleurotus (Vilgalys and Sun 1994). However, over-reliance
on Mendelian-inherited traits may lead to incongruences
between phenotypically and phylogenetically defined spe-
cies (Aime 2004).
Because of these challenges, modern fungal taxonomy

emphasizes a genealogical approach, including single- or
concatenated multi-gene phylogenies, genealogical con-
cordance, and phylogenomics. The main advantage of
this approach is that it can be explored within an explicit
hypothetical framework, and phenotypic characters can
be placed a posteriori into an evolutionary context. An-
other advantage is the large number of characters ana-
lyzed: whereas phenotype matrices may at best contain a
few hundred characters and often less than one hundred,
sequence data range from several hundred (single-
marker) to thousands (multi-locus) to hundreds of thou-
sands or more (phylogenomics) of sites. However, even
with molecular data, difficulties arise from a lack of un-
derstanding of evolutionary processes, which are not al-
ways discernible in a phylogeny. For instance, recently
emerging species may not resolve through reciprocal
monophyly (Cunnington et al. 2005; Goodman et al.
2009; Przyboś et al. 2015; Lachance 2016; Leavitt et al.
2016; Liu et al. 2017). These problems are further com-
pounded by often improper taxon selection for molecu-
lar analysis, as the most closely related sequences may
not be included in the data set or the closest relatives
may not have been sequenced. For instance, Evans et al.
(2002) suggested placement of the frosty pod rod, Moni-
liophthora roreri, an important pathogen on cacao, in
the genus Crinipellis, based on the notion that its ITS
sequence blasted most closely to Crinipellis perniciosa.
Subsequent phylogenetic analysis, however, demon-
strated that the latter was not a genuine Crinipellis but
formed a separate generic lineage together with Moni-
liophthora roreri in Marasmiaceae (Aime and Phillips-
Mora 2005; Kerekes and Desjardin 2009; Evans 2016;
Niveiro et al. 2020).
Whole-genome level approaches are increasingly

employed in fungi to surmount issues of resolution and
support in single- and multi-marker studies (Gladieux
et al. 2015; Magain et al. 2017; Lorch et al. 2018; Kob-
moo et al. 2019; Morin et al. 2019; Haridas et al. 2020).
For prokaryotes, the computationally inexpensive assess-
ment of average nucleotide identity (ANI) has proven
popular, although maximum-likelihood methods are also
being applied (Parks et al. 2018). Multiple prokaryotic
genomes are readily available including from type mater-
ial (Konstantinidis and Tiedje 2005; Ciufo et al. 2018).
Another genome-based approach to resolve species
complexes in prokaryotes is Percentage of Conserved
Proteins (POCP) analysis (Qin et al. 2014; Martinez-
Romero and Ormeño-Orrillo 2019; Peix et al. 2019; Wit-
touck et al. 2019; Rensink et al. 2020), a method that has
now also been implemented in fungi (Wibberg et al.
2020). These strategies are still impractical for broad ex-
ploration of fungal diversity, as the accurate analysis of
fungal genomes is a time-consuming process and sam-
pling remains sparse, although high quality genomes re-
quiring fewer analytical resources may soon become
available with improved third generation sequencing
techniques, such as PacBio Sequel and Oxford Nanopore
Technologies (Tedersoo et al. 2018b; Loit et al. 2019;
Stadler et al. 2020; Wibberg et al. 2020). For difficult
species complexes, sequencing of restriction site-
associated DNA markers (RADSeq) is another emerging
approach in fungal taxonomy (Grewe et al. 2017, 2018;
Salas-Lizana and Oono 2018).
Integrative taxonomy attempts to combine as much

evidence as possible from genealogical, biological,
phenotypic and other approaches to delimit species
(Aime 2004; Will et al. 2005; Yang and Rannala 2010;
Padial et al. 2010; Udayanga et al. 2014; Haelewaters
et al. 2018; Kruse et al. 2018a). The different approaches
are thereby not competitive but components of a holistic
strategy. Species hypotheses are normally established
using phenotypic characters and, where possible, tested
by reconstructing the underlying genealogy through mo-
lecular phylogeny. This strategy is now often inverted,
by detecting novel lineages through phylogenetic analysis
and then evaluating these through correlation with
phenotypic characters (Millanes et al. 2011; Liu et al.
2015; Lücking et al. 2017; Kruse et al. 2018b). The
phenotype has not become obsolete, but forms an im-
portant component of integrative taxonomy, including by
extension aspects of autecology, physiology, and biochem-
istry. The phenotype also remains important when evalu-
ating diagnostic characters for identification tools and in
cases where it has not been possible to obtain sequence
data. Biogeography represents an additional dimension
assessed independently of phenotype and ecology and is
often used to recognize phenotypically cryptic, allopatric
lineages (James et al. 2001; Yurkov et al. 2015a; Sánchez-
Ramírez et al. 2015; Lücking et al. 2017).

Recognition
Quantitative species delimitation analyzes topological as-
pects of one or several phylogenetic trees, such as gen-
etic distance (branch length patterns), support and
concordance (Ence and Carstens 2011; Lim et al. 2011;
Fujita et al. 2012; Puillandre et al. 2012; Zhang et al.
2013; Fujisawa et al. 2016). In contrast, recognition sub-
sequently detects diagnostic features that allow lineages
delimited through phylogeny to be recognized (Somer-
vuo et al. 2006; Trifa et al. 2008; Kruse et al. 2018a, b).
Delimitation may be based on a broad set of data,
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including whole-genome data, whereas lineages thus
delimited may be recognized by few diagnostic features,
either phenotypic or through DNA barcodes. For certain
fungi, including molds and yeasts, diagnostics may be de-
rived from physiological profiles as determined by VITEK
or API systems, high-resolution melting (HRM) assays,
and proteomics via MALDI-TOF (Buesching et al. 1979;
Fenn et al. 1994; Kurtzman 2006; Gazis et al. 2011; Nenoff
et al. 2013; Yurkov et al. 2015a, b; Fidler et al. 2017; Patel
2019; Passer et al. 2019). Species delimitation and recogni-
tion are often confounded, and “species recognition ap-
proaches” often refer to species delimitation (e.g. Dettman
et al. 2003a, b; Geiser et al. 2007; Grünig et al. 2007).
Single phenotype characters or DNA barcoding markers

may provide reliable discrimination in many fungi. How-
ever, often a combination of characters or markers is
needed to achieve the desired accuracy and precision,
sometimes incorporating character weighting (Berger
et al. 2011; Dupuis et al. 2012; Krüger et al. 2012; Kruse
et al. 2018b; Liu et al. 2015; Yurkov et al. 2015b). Another
conceptual difference between species delimitation and
recognition is that diagnostic characters are not necessar-
ily used for delimitation; typically, delimitation is based on
molecular phylogeny, whereas recognition relies on quan-
titative (statistically tested) analysis of phenotypic charac-
ters mapped a posteriori onto phylogenetic trees, the
desirable standard approach not only in fungal taxonomy.

Identification
Following species delimitation and recognition, a critical
step is needed to enable identification: the generation of
effective identification tools that synthesize the available
information (Fig. 2). These may range from traditional
dichotomous to computerized interactive keys based on
the phenotype, to molecular identification, such as DNA
barcoding, or a combination of various methods (Druz-
hinina et al. 2005; Coleman et al. 2010; Reginato 2016;
Attigala et al. 2016; Smith Jr 2017; Nguyen et al. 2017;
Van Sinh et al. 2017; Tofilski 2018). Recent develop-
ments in plant taxonomy include machine-learning tools
to evaluate phenotype features (Hernández-Serna and
Jiménez-Segura 2014). This approach works rather
well in features with a particular architecture, such as
leaves, enabling powerful applications, such as Leafs-
nap and Leafnet (Kumar et al. 2012; Barré et al. 2017;
Kress et al. 2018). For fungi, image-based identifica-
tion is challenging, since quantitative morphometry
cannot usually be applied, although there might be
some use in the detection of plant diseases (Pujari
et al. 2015; Heim et al. 2018).
Providing effective identification tools is one of the

fundamental tasks of taxonomists, not only in mycology.
Based on available phylogenetic treatments, taxonomic
experts are encouraged to employ state-of-the-art
methods to assemble comprehensive data sets for diag-
nostic characters, which allow the creation of interactive
and/or automatically derived dichotomous or synoptic
keys for a given group (e.g. Rambold 1997; Zambonelli
et al. 2000; Druzhinina et al. 2005; Triebel et al. 2016;
Nguyen et al. 2017). MycoBank Polyphasic Identifications
Databases provides links to identification tools for various
groups of fungi [http://www.mycobank.org/DefaultInfo.
aspx? Page = polyphasicID]. For plant pathogens, the
USDA Fungal Databases website [https://nt.ars-grin.gov/
fungaldatabases] is also helpful (Farr and Rossman 2020).
Identification tools and descriptions of new taxa

should be freely accessible. The latter is possible
through registration of fungal names in MycoBank,
Index Fungorum or Fungal Names; the deposition of
images is not obligatory but strongly recommended.
Open access options for identification tools often
conflict with the needs for publication impact and the
inflated costs for open access models. In such cases, a
practical remedy is to post pre-publication manu-
scripts in a free repository, such as bioRxiv (Sever
et al. 2019), so that users can freely access the infor-
mation while citing the original paper. Unified digital
protologues with semantic standardization can be a
further step towards automated collection, structuring
and analysis of taxonomic data, based on both speci-
mens and species (Kilian et al. 2015; Triebel et al.
2016; Plitzner et al. 2019; Dallwitz et al. 2020). How-
ever, this approach is challenging due to termino-
logical ambiguity and the large set of characters
required to cover all fungi, only a fraction of which is
typically used in a particular lineage.

Verification
Users often uncritically accept identifications achieved
with a given tool, although the identification process
may lead to a wrong name. This happens not only in
phenotype-based approaches but also with molecular
identifications, when reference sequences are incorrectly
labeled or follow an inappropriate taxonomic concept,
or through uncritical use of pairwise similarity-based ap-
proaches such as BLAST (see below and Fig. 3). Differ-
ent BLAST algorithms (megablast, discontinuous
megablast and blastn) can yield different matches, de-
pending on the length of the query and/or reference se-
quences, what score is observed, and whether sequences
of the underlying marker, such as the ITS, were depos-
ited in their entirety or separately, e.g. ITS1 versus ITS2
(Altschul et al. 1990; Camacho et al. 2009; Nilsson et al.
2008; Blaalid et al. 2013; Tedersoo et al. 2015; Madden
et al. 2019; Větrovský et al. 2020). This underlines the
importance of the verification process. Verification must
thereby go beyond the data used for identification, to
avoid circular conclusions (Lindahl et al. 2013; Hart

http://www.mycobank.org/DefaultInfo.aspx?
http://www.mycobank.org/DefaultInfo.aspx?
https://nt.ars-grin.gov/fungaldatabases
https://nt.ars-grin.gov/fungaldatabases
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et al. 2015; Vu et al. 2019). Unfortunately, verification is
impractical or next to impossible for massive amounts of
data, such as in environmental metabarcoding ap-
proaches, which consequently require trade-off between
speed and accuracy (see below).
Verification steps are manifold but largely depend on

the nature of diagnostic characters and whether pheno-
typic or molecular annotations are being used. For
phenotype-based identifications, verification relies on
consultation of original descriptions and examination
of authentic specimens (including cultures) and/or im-
agery, including digitized type material in repositories,
such as JSTOR Global Plants (Ryan 2013, 2018) or the
Mycology Collections Portal (Miller and Bates 2017). Spe-
cies Fungorum [http://www.speciesfungorum.org], Myco-
Bank [http://www.mycobank.org], The Faces of Fungi
[http://www.facesoffungi.org], The Yeasts Trust Database
[http://www.theyeasts.org], USDA Fungal Databases
[https://nt.ars-grin.gov/fungaldatabases], the Biodiversity
Heritage Library [https://www.biodiversitylibrary.org],
Cyberliber [http://www.cybertruffle.org.uk/cyberliber], and
Google Scholar [https://scholar.google.com], are excellent
tools to obtain information about original and other taxo-
nomic literature, often with direct links to available
sources (Crous et al. 2004; Robert et al. 2013; Jayasiri et al.
2015; Farr and Rossman 2020; Boekhout et al. 2020). Con-
firmation by specialists is another option, which of course
requires the continued existence of a sufficient number of
taxonomic experts (Lücking 2020).
Although often neglected, phenotype-based verification is

also indispensable for sequence-based identifications. To fa-
cilitate this process, it is recommended to generate digitally
accessible images of sequenced voucher material and de-
posit the material in registered fungaria (Thiers 2018), with
links between sequence data, voucher information, and
digital imagery (Krah et al. 2019). Other possibilities include
improving the accurate annotation of vouchers enforcing
structured information for biorepositories (Güntsch et al.
2017; Sharma et al. 2018), especially during name registra-
tion, publication and sequence submission to GenBank
and its partners in the International Sequence Data-
base Collaboration (INSDC). The AJOM fungal notes
series publishes new collections of known species
with sequence data (Hyde et al. 2020) in a novel for-
mat to emphasize the importance of such contribu-
tions. The data with imagery is also placed online in
websites developed for specific groups (Jayawardena
et al. 2019; Pem et al. 2019; Li et al. 2020b).
Entirely sequence-based verification can be achieved

through multiple alignment-based phylogenetic analysis
and checking the placement of authentic reference se-
quences, in particular those based on type specimens.
BLAST offers the option to limit hits to “Sequences from
type material” (Federhen 2015), but since their number is
still low and biased towards particular lineages, this option
is currently only of theoretical use for broad fungal surveys.
If type-derived sequences are not available, curated se-
quence databases can be consulted for vetted non-type ref-
erence sequences, such as UNITE (Abarenkov et al. 2010;
Kõljalg et al. 2013, 2019; Nilsson et al. 2019), NCBI RefSeq
(Targeted Loci) (Schoch et al. 2014), the various group-
specific sources linked through MycoBank BioloMICS Se-
quences (Robert et al. 2013), or specialized databases for
plant and animal/human pathogens, such as Q-Bank and
the International Society of Human and Animal Mycology
(ISHAM) ITS reference DNA barcoding database (Bonants
et al. 2013; Irinyi et al. 2015). Third-party annotations in
primary repositories, such as GenBank, both directly and as
push-back mechanism from curated databases (Fig. 3),
would also be valuable. Alternatively, NCBI RefSeq (Tar-
geted Loci) could be extended to include additional se-
quences from reference material in public collections, e.g.
non-type sequences vetted through multi-locus phylogen-
etic analysis by third parties in a publication. Another op-
tion would be to implement a simple, third-party
annotation system that links three unique identifiers: (a)
GenBank accession of sequence to be annotated; (b) Myco-
Bank/Index Fungorum/FungalNames registration number
of the name representing the correct identification; (c) DOI
of the publication that documents the correct identification.
Such a flat table could be centrally curated and incorpo-
rated in automated identification pipelines.
Interactive polyphasic identification tools such those

based on DELTA IntKey, MycoKeys, DiscoverLife IDnature
guides, Dryades KeyToNature or MyCoPortal keys offer
the possibility to obtain verification feedback through the
identification process about the taxa remaining in a pool,
after selecting a set of characters and states (Dallwitz
1993; Han et al. 2010; Nimis et al. 2012; Lücking and Pick-
ering 2020; Miller and Promputtha 2020a, b; Miller et al.
2020a, b). Phenotype-based phylogenetic binning (Berger
et al. 2011) not only integrates molecular and phenotype
data but also allows the establishment of automated iden-
tification tools, such as PhyloKey, which compute boot-
strap support values as reliability measures for phenotype-
based identifications on a molecular phylogenetic back-
bone, thus incorporating an automated verification step
(Lücking et al. 2016). Assembling the underlying data
matrices for such approaches is time-consuming, but it re-
sults in directly verifiable identifications and a structured,
more objective, reproducible identification process.

CHALLENGES WITH REGARD TO UNAMBIGUOUS
IDENTIFICATION OF FUNGI
Universal, unambiguous identification of fungi: does one
size fit all?
Phenotypically cryptic speciation and convergent evolu-
tion are frequent in fungi (Crespo and Pérez-Ortega

http://www.speciesfungorum.org
http://www.mycobank.org
http://www.facesoffungi.org
http://www.theyeasts.org
https://nt.ars-grin.gov/fungaldatabases
https://www.biodiversitylibrary.org
http://www.cybertruffle.org.uk/cyberliber
https://scholar.google.com
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2009; Cai et al. 2011; Moncada et al. 2014; Balasundaram
et al. 2015; Jayawardena et al. 2016; Liu et al. 2017;
Kruse et al. 2018b). Formal taxonomy that recognizes
cryptic species may appear impractical because the mo-
lecular tools necessary for precise identification are out
of reach for many users. However, phylogenetic distinct-
iveness of lineages should not be dismissed because
methods for their detection are not readily available
(Hawksworth 2016). For each group of fungi, approaches
to identification have to be cognizant of the current spe-
cies concept established for that group, the methods to
evaluate that concept, and the required level of preci-
sion. Lack of accuracy of fungal identifications cannot be
excused by the lack of adequate tools, and so the avail-
ability of tools determines which fungi can be studied.
However, lack of molecular tools can be partially
balanced by expertise: talented and knowledgeable
mycologists may provide more accurate species
identifications through non-molecular approaches
than unexperienced users do through DNA-based
identifications.
Ecological studies in fungi often emphasize statistical

data analysis over accuracy and precision of taxon iden-
tifications. The common practice of identifying oper-
ational taxonomic units (OTUs) to only higher taxa
(genus, family, order) should be avoided, unless this is
the desired level of precision, justified by the objectives
and underlying assumptions, or in environmental meta-
barcoding when no close relatives have been sequenced
(Caporaso et al. 2010; Huson et al. 2011; Veresoglou
et al. 2013; Kemler et al. 2017; Kahlke and Ralph 2019).
This also includes the use of uncritically adopted generic
names in polyphyletic circumscriptions and listing infor-
mally named morphospecies without proper reference
allowing their recognition in another context. The obvi-
ous solution lies in interdisciplinary collaboration (Öpik
and Davison 2016; Grube et al. 2017). However, this is
rarely realized, one of the reasons why the importance of
taxonomy is not broadly acknowledged (Seifert et al. 2008;
Lücking 2020). We recommend ecologists, plant patholo-
gists and researchers in other fields of study that rely on
fungal taxonomy and associated data (e.g. species traits
such as functional spore morphology; e.g. Aguilar-
Trigueros et al. 2019) to collaborate with taxonomists, and
we encourage taxonomists to make themselves available
for such collaborations. After all, this is one of the core
duties of taxonomic experts, but it also requires continu-
ous support for this field of study (Lücking 2020).
In cases of DNA-based identifications, users often

blindly rely on the presumed accuracy of reference data
(see below), and there is usually no consultation with
taxonomic expertise. Another issue is the habit of citing
sequence accession numbers as “sources” of identifica-
tions, while ignoring the underlying taxonomic work that
let to the deposition of these valuable reference sequences
in the first place. Looking up and citing these works is an
important step in quality filtering of reference sequences
and to some extent can replace taxonomic expertise when
assessing results of DNA-based identifications. In environ-
mental metabarcoding approaches, taxonomic expertise is
unfortunately largely fruitless due to the absence of phys-
ical voucher specimens. Also, since metabarcoding typic-
ally encompasses a broad diversity of higher taxa
(Tedersoo et al. 2014; Davison et al. 2018; Ruppert et al.
2019), it is impossible to achieve high levels of accuracy
and precision for species identifications across all lineages,
but there are alternative strategies to obtain reliable results
in such studies (see below).
For plant- and animal/human-pathogenic or industrial

fungi, a high level of taxonomic precision is required
that cannot usually be achieved by phenotypic identifica-
tions. Instead, DNA barcoding or specific diagnostic
testing and profiling have become indispensable (Criseo
et al. 2015; Crous et al. 2015, 2016; Irinyi et al. 2015;
Heim et al. 2018; Hoang et al. 2019). The emerging
multi-drug resistant yeast Candida auris is one example
of a fungus misidentified by phenotypic tools (Chatterjee
et al. 2015; Lockhart et al. 2017). Identification of quar-
antine pests, such as Phyllosticta citricarpa, the causal
agent of Citrus Black Spot disease (Guarnaccia et al.
2017), is another example where a particular molecu-
lar marker should be employed, as recommended by
the Q-Bank of the European and Mediterranean
Plant Protection Organization (EPPO; Bonants et al.
2013). Manuals help to select proper genetic markers
for identification of plant pathogenic, clinical and
food-borne fungi (Marin-Felix et al. 2019; Samson
et al. 2019; de Hoog et al. 2020). In certain cases, the
species level may not be sufficiently precise, and iden-
tification of particular lineages or strains may be re-
quired (Pegg et al. 2019).
Because of these issues, presently there is no single

identification method that would universally apply to all
fungi and be broadly available to users.

Reference data: the bread and butter of identification
tools
Identification tools are only as good as the reference data
behind them. For phenotype-based keys, taxa under all
published names in a group need to have been studied,
usually as the result of monographic treatments or revi-
sions. Where no keys are available, it is necessary to con-
sult published descriptions and reference specimens, an
often painstaking, yet indispensable, approach that is now-
adays facilitated by digital repositories (see above). The ac-
cessibility of reference material, both physically and
virtually, is crucial in this process. Ideally, a broad array of
characters needs to be quantitatively analyzed to
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determine those most effective for identification (e.g., Sie-
ber et al. 1998).
For DNA barcoding, completeness of reference se-

quences is critical, but unfortunately still rudimentary
for many fungi, especially for species-rich genera (Fig. 4).
Currently, sequence data exist for ca. 45,000 named fun-
gal species, most of these including ITS. This corre-
sponds to about 30% of known species, but only 6%
when assuming a minimum of 700,000 species (Schmit
and Mueller 2007) and 1–2% when considering 2.2–3.8
million (Hawksworth and Lücking 2018). Closing this
substantial gap must be a priority of the mycological
community (Osmundson et al. 2013). Curated databases,
such as UNITE, MaarjAM, ISHAM DNA barcoding,
NCBI RefSeq (Targeted Loci) and CBS/WI (Öpik et al.
2010, 2014; Kõljalg et al. 2013, 2019; Schoch et al. 2014;
Irinyi et al. 2015; Vu et al. 2016, 2019) play an import-
ant role in this endeavor. UNITE features close to 2.5
million curated fungal ITS sequences, corresponding to
over 100,000 species hypotheses at a default threshold
of 98.5% identity. However, most of these species hy-
potheses remain unnamed. Many newly published
species names remain unrecorded in public sequence
databases by failure of submitters to update their re-
cords, a problem that can be remedied by standardized
keywords and/or listing of type-based DNA barcode
Fig. 4 Proportion of species with sequence data compared to total numbe
of the NBCI taxonomy and Species Fungorum. The mean proportion varies
rich genera. At least some species-poor to moderately diverse genera have
species. In more diverse genera, the maximum proportion of sequenced sp
minimum proportion increases, meaning that all large genera have at least
accessions in taxonomic treatments (Lücking et al.
2017; Schoch et al. 2017).
A common misconception in DNA barcoding is the as-

sumption that existing reference data provide a definitive
answer, either in species identification or to establish
whether a taxon is new. Such an approach will fail when
reference data are incomplete or sequences are improperly
labeled (Nilsson et al. 2006). Methods such as reference
OTU picking, implemented in QIIME and other pipelines
(Caporaso et al. 2010; Bik et al. 2012; Rideout et al. 2014;
Cline et al. 2017), are highly sensitive to the quality and
scope of reference databases, although open reference OTU
picking allows recognition of query sequences that do not
have close reference matches. Potential error is also hidden
in what has been called last (lowest) common ancestor
(LCA) analysis in analytical packages, such as MEGAN,
QIIME and BASTA (Caporaso et al. 2010; Huson et al.
2011; Kahlke and Ralph 2019), an approach commonly
used in environmental metabarcoding of fungi (Majaneva
et al. 2015; Miller et al. 2016; Sinha et al. 2017; Anslan et al.
2018). This algorithm identifies the most similar sequences
in a reference database and returns the highest shared tax-
onomy level obtained from the corresponding NCBI tax-
onomy. For instance, if the five best hits all represent (a)
the same species, (b) the same genus but different species,
or (c) the same family but different genera, the query
r of species per genus known in fungal genera, based on integration
between 40% in species-poor genera and as little as 20% in species-
all species sequenced, whereas many others are devoid of sequenced
ecies sharply drops as a function of species richness, but also the
some species sequenced but are consistently incomplete
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sequence is identified either to the level of (a) species, (b)
genus, or (c) family. The accuracy and precision of this
approach is determined by the sequence labels, as
well as how similar the closest hits are to the query
sequence. In the case of the above barcoding example
of Trametes menziesii from Vietnam (Fig. 3), LCA
would return Basidiomycota (phylum) as the highest
level of precision, even if the underlying data would
allow an identification to species. Excluding all un-
determined sequences, the best hits would include the
genus names Trametes, Lenzites and Leiotrametes and
hence return the family Polyporaceae as highest level
of precision. Curated databases, such as UNITE per-
mit the use of the species hypothesis identifier as
highest level of precision, but this is cumbersome in
the interpretation of massive amounts of data.
For phenotype-based identifications, a frequent error

is the use of improper identification tools which may ei-
ther be outdated, incomplete, or geographically inappro-
priate. For a given group in a geographic region, proper
identifications tools are often not available and one has
to rely on “alien” sources. In such cases, identifications
should at best be considered initial approximations. Un-
fortunately, checklists and digital specimen repositories
contain numerous presumably widespread fungal species
because a tool established for a particular region has
been used to identify taxa elsewhere. High quality treat-
ments, such as Mushrooms of North America (Phillips
1991) and Lichens of North America (Brodo et al. 2001)
have become popular identification tools for users across
the world (e.g. Ecuador, macrolichens: González et al.
2017; Brazil, ectomycorrhizal fungi: Giachini et al. 2000;
Israel, Acarospora lichens: Temina et al. 2005; India, ed-
ible mushrooms: Singh et al. 2017). However, identifica-
tions based on such “alien” sources have to be treated
with caution.

CAVEATS OF THE ITS AS UNIVERSAL DNA
BARCODING MARKER IN FUNGI
Molecular identification is rapidly becoming a major tool
in fungal taxonomy, due to its universal applicability,
speed, and the presumption that it replaces taxonomic
expertise, making this approach broadly applicable in
many fields of mycology (Yahr et al. 2016). In environ-
mental metabarcoding, it is in fact the only tool available
(Epp et al. 2012; Toju et al. 2012; Hibbett et al. 2016;
Miller et al. 2016; Lücking and Hawksworth 2018;
Tedersoo et al. 2018b; Ruppert et al. 2019). The latter
issue is of particular importance, as data from environ-
mental studies grow exponentially. The already outdated
number of fungal ITS reads in the SRA (9,762,039,423 as
of January 2019) surpasses the number of fungal ITS se-
quences accessioned in GenBank (1,367,715 as of March
2020) by a factor of more than 7000 (currently likely over
10,000). Six years ago, this ratio was 20:1 and just two
years ago, it had increased to 1000:1 (Lücking and Hawks-
worth 2018). Many developments in this context work to-
wards automated pipelines which rely principally on
sequence similarity assessment based on the idea of a uni-
versal fungal barcoding marker, such as the ITS (Majaneva
et al. 2015; Sinha et al. 2017; Anslan et al. 2018).
Following the initial idea of universal DNA barcoding

(Gressel and Ehrlich 2002; Hebert et al. 2003; Seifert
et al. 2007; Meusnier et al. 2008; Begerow et al. 2010),
the fungal ITS was proposed as the first universal fungal
barcoding marker, being mostly easily amplified and se-
quenced and providing acceptable resolution in a wide
range of taxa (Nagy et al. 2012; Schoch et al. 2012; Xu
2016). Large secondary repositories, such as UNITE,
ISHAM DNA barcoding, and NCBI RefSeq (Targeted
Loci) (Kõljalg et al. 2013, 2019; Schoch et al. 2014; Irinyi
et al. 2015, 2016; O'Leary et al. 2016) became major re-
sources for curated fungal ITS reference sequences. A
major advantage of such curated databases is that cur-
ation, annotation and expansion of the database is being
performed by the research community (Abarenkov et al.
2010; Irinyi et al. 2015; Nilsson et al. 2019). The ITS oligo-
nucleotide hallmark approach attempted to refine DNA
barcoding and its use in formalized interactive identifica-
tion tools, by using a combination of short, species-
specific sequence patterns (motifs, anchors) rather than
overall sequence similarity (Druzhinina et al. 2005). This
approach should be revisited as an integrated tool as it al-
lows adjustment to situations where more than one DNA
barcode is needed, and for genome-wide studies through
which diagnostic short sequences may subsequently be
identified.

Lack of resolution of the ITS and use of secondary
barcodes
A growing number of studies is challenging the utility
of ITS for delimiting, recognizing and identifying fun-
gal species in certain lineages (O'Donnell and Cigelnik
1997; Nilsson et al. 2008; Bellemain et al. 2010; Pino-
Bodas et al. 2013; Kijpornyongpan and Aime 2016;
Thiery et al. 2016; Hughes et al. 2018; Kruse et al.
2018a, b; Parks et al. 2019; Tremble et al. 2019; Sta-
dler et al. 2020). A minor problem is that ITS may
not amplify in all fungi (Kijpornyongpan and Aime
2016), but sequencing success is better than with
many other markers (Schoch et al. 2012). More im-
portant caveats include lack of resolution and the po-
tential presence of non-homologous ITS copies in the
genome.
It has been demonstrated that ITS does not provide

sufficient resolution among closely related species of in-
door and food-borne molds (e.g. Aspergillus, Penicil-
lium), plant or human/animal pathogens (Alternaria,
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Cladosporium, Colletotrichum, Fusarium, as well as Phy-
tophthora in the Oomycota) or other fungi (e.g. fresh-
water Sordariomycetes, Trichoderma) including slime
molds. For these, secondary barcoding markers, such as
the intergenic spacer (IGS), β-tubulin II (TUB2), DNA-
directed RNA polymerase II largest (RPB1) and second
largest (RPB2) subunits, translational elongation factor
1α (TEF1), DNA topoisomerase I (TOP1), phosphoglyc-
erate kinase (PGK), and cytochrome c oxidase subunit I
(COX1) and subunit II (COX2), have been proposed
(Table 1; Geiser et al. 2007; Gilmore et al. 2009; Damm
et al. 2012; Maharachchikumbura et al. 2012; López-
Quintero et al. 2013; Balasundaram et al. 2015; Choi
et al. 2015; Stielow et al. 2015; Xu 2016; Al-Hatmi et al.
2016; Irinyi et al. 2016; Větrovský et al. 2016; Wouden-
berg et al. 2017; Schnittler et al. 2017; Tekpinar and Kal-
mer 2019; Luo et al. 2019; Meyer et al. 2019).
Occasional cases in fungal groups where ITS otherwise
provides sufficient resolution, such as the subcosmopoli-
tan and threatened macrolichens, Sticta fuliginosa and S.
limbata (Magain and Sérusiaux 2015; Moncada et al.
2020), indicate that this problem is not necessarily
taxon-specific, but may denote recently or dynamically
evolving lineages, which can occur in any group of fungi
but is apparently more prevalent in some than in others.
In recently analyzed barcode datasets (Vu et al. 2016,
2019), between 6 and 17% of yeast and filamentous fun-
gal species were shown to be indistinguishable by ITS.
Meyer et al. (2019) found that 25% of human/animal
pathogenic fungi cannot be identified based on ITS
alone. Many plant-parasitic lineages in Dothideomycetes
Table 1 DNA Barcoding markers proposed for fungi, their recomme
et al. 2015; Xu 2016)

DNA barcoding marker Acronym Examples

Internal transcribed spacer ITS universal, Agaricu
Cora, Fomitopsis,

Intergenic spacer IGS Schizophyllum

β-tubulin II TUB2 Amanita, Aspergi
Pseudopestalotiop

DNA-directed RNA polymerase II subunit A RPB1 Inocybe

DNA-directed RNA polymerase II subunit B RPB2 universal, Sordari
Cladonia, Inocybe

Translation elongation factor 1 alpha TEF1 universal, Sordari
Fusarium, Trichod

hypothetical protein LNS2 Pucciniomycota

Phosphoglycerate kinase PGK Fusarium, Penicill

DNA topoisomerase I TOP1 Pucciniomycota,

Cytochrome c oxidase subunit I COX1 Cladonia, Oomyc

Cytochrome c oxidase subunit II COX2 Oomycota
and Sordariomycetes cannot be resolved to species level
using ITS (Damm et al. 2012; Maharachchikumbura
et al. 2012; Hyde et al. 2013; Manamgoda et al. 2014;
Woudenberg et al. 2017; Haridas et al. 2020). On the
other hand, for lichen-formers in Dothideomycetes, such
as the genus Strigula, ITS provides a high level of reso-
lution (Jiang et al. 2016, 2017a, b, 2020; Ford et al. 2019;
Woo et al. 2020). A possible correlation between intra-
genomic variability of ITS and fungal life strategies
should be explored further; the observed patterns indi-
cate that fungal lineages exhibiting life strategies such as
highly specific parasitism may undergo fast and complex
speciation not immediately reflected in the ITS. On the
other hand, economically and medically important fungi
are also more densely sampled, allowing for a more fine-
grained taxonomy reflecting minor but important differ-
ences between individual strains.
In certain cases, differential levels of resolution be-

tween ITS and more variable markers is being resolved
by recognizing infraspecific taxa, such as in the lichen-
forming ascomycete Thamnolia (Onuţ-Brännström et al.
2017; Ioana et al. 2018; Jørgensen 2019); in other cases,
e.g. the various IGS-defined clades of the ubiquitous ba-
sidiomycete Schizophyllum commune (James et al. 2001),
no formal taxonomy has been implemented. As a result,
the same underlying phylogenetic structure may trans-
late into different taxonomic solutions, usually depend-
ing on the need. The level of precision to be achieved by
DNA barcoding should therefore be dictated through
context, regardless of how that precision is taxonomic-
ally formalized. In several fungal groups, ITS can only
nded nomenclature and selected examples (see also Stielow
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provide an initial approximation within a given clade,
usually to a species complex, but cannot discriminate to
the level of species. Two-marker barcoding systems,
such as nuLSU/ITS and TEF1 for yeasts or human/ani-
mal pathogens, are a practicable solution in such cases
(Kurtzman 2006; Robert et al. 2011; Stielow et al. 2015;
Vu et al. 2016; Hoang et al. 2019), although the applica-
tion of this approach in metabarcoding remains
challenging.

Intragenomic variation in the ITS
More troubling than insufficient resolution is evidence
of intragenomic variation of the ribosomal DNA (rDNA)
cistron, including the ITS region, particularly when pro-
ducing non-homologous discrete ITS variants, as this
may result in conflicting molecular identifications. Intra-
genomic ITS variation is well-documented for bacteria,
plants and animals (e.g. Wörheide et al. 2004; Rosselló
et al. 2006; Stewart and Cavanaugh 2007). There is also
growing evidence in certain fungal lineages (Smith et al.
2007; Simon and Weiß 2008; Lindner and Banik 2011;
Kiss 2012; Vydryakova et al. 2012; Wilson et al. 2012;
Harrington et al. 2014; Li et al. 2013, 2017; Kijpornyong-
pan and Aime 2016; McTaggart and Aime 2018; Colabella
et al. 2018; Heeger et al. 2018; Hughes et al. 2018; Stadler
et al. 2020). In most fungi, however, the rDNA cistron, in-
cluding the ITS, appears to follow the principle of con-
certed evolution (Ganley and Kobayashi 2007).
Intragenomic ITS variation may largely stem from

three processes: (1) stochastic point mutations resulting
from DNA replication errors during cell division, (2) re-
combination through hybridization and introgression
(e.g., McTaggart and Aime 2018), and (3) gene duplica-
tion leading to paralogs and pseudogenes (Dufayard
et al. 2005). Paralogs and pseudogenes have been dem-
onstrated for ITS, particularly in plants (Álvarez and
Wendel 2003; Zheng et al. 2008; Xu et al. 2017), but
convincing evidence in fungi is rare (Li et al. 2017). The
distinction between hybridization and introgression or
gene duplication as causes for intragenomic ITS vari-
ation is crucial, as the first may result in erroneous iden-
tifications of actually existing taxa present in an alien
genome, whereas the second will produce “ghost” taxa,
particularly in metabarcoding data.
Neither hybridization and introgression nor gene du-

plication are unique to the ITS, but the specific chal-
lenge of utilizing ITS is its presence in multiple copies in
the genome, as part of 18S-ITS-28S tandem repeats lo-
cated on several chromosomes. Intragenomic variation
in point mutations is an obligate consequence of this,
because DNA polymerases introduce stochastic errors
during DNA replication. Under laboratory conditions,
error rates of Taq polymerase vary between 0.1% and
less than 0.01% (Chen et al. 1991; McInerney et al. 2014;
Potapov and Ong 2017). With an average number of 100
copies in the fungal genome (Lofgren et al. 2019) and an
average length of 550 bases (Schoch et al. 2014; Nilsson
et al. 2015), the average number of bases in the entire
ITS array is 55,000, so per replication cycle, 0.5 errors
per ITS copy may be introduced on average. Such vari-
ation should not result in problems in ITS barcoding ap-
proaches, as it is substantially below even narrow
identity thresholds. In contrast, processes such as
hybridization and introgression or gene duplication
introduce discrete ITS variants into the genome, which
will result in serious identification errors if not properly
recognized.
Intragenomic ITS variation is commonly misinter-

preted, and its correct understanding is crucial for asses-
sing potential problems. For instance, in the smut
fungus Ceraceosorus (Kijpornyongpan and Aime 2016),
intragenomic variation was found to be both stochastic
and phylogenetically structured, affecting 25 and 15 out
of 856 sites, respectively. Stochastic variation is a result
of DNA replication errors but it does not affect phylo-
genetic placement of individual haplotypes when ana-
lyzed in a phylogenetic context (Lücking et al. 2014).
While in the above study, the total number of stochastic-
ally varying sites (25) was high, individual sequences var-
ied in up to four sites only, resulting in pairwise
similarity of over 99.5%, thus uncritical for barcoding ap-
proaches. The 15 sites with phylogenetically structured
variation resulted in the formation of three clades (Kij-
pornyongpan and Aime 2016). While these distinctive
clades appear to represent non-homologous, discrete
ITS copies, they may also be highly specific for this
taxon and hence could be used for identification
purpures.
Another factor concerning the impact of intragenomic

variation in the ITS is the sequencing technique. In ge-
nomes dominated by one functional copy, Sanger se-
quencing will mask variation in spurious background
signal and provide clean sequences. If several frequent
haplotypes with point mutations exist, variants may ap-
pear as ambiguous base calls in specific positions with
Sanger sequencing. On the other hand, discrete variants
originating from hybridization or gene duplication will
produce largely unresolved sequence chromatograms,
requiring cloning or other techniques. In contrast to
Sanger sequencing, correct interpretation of ITS variants
is particularly critical in environmental metabarcoding,
with the additional challenge of separating true intrage-
nomic variation from sequencing errors (Lücking et al.
2014; Heeger et al. 2018; Thines et al. 2018). In metabar-
coding approaches, natural and artifactual variants will
skew diversity estimates and introduce “ghost” taxa if
not properly assessed (see below). One example is the
nectar yeasts (Metschnikowiaceae), which display high
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intragenomic rDNA variation (Heeger et al. 2018; Sipiczki
et al. 2018), so species richness revealed through ITS
metabarcoding (Vannette and Fukami 2017) will be over-
estimated, influencing conclusions about alpha- and beta-
diversity. Similar considerations apply to other groups,
such as arbuscular mycorrhizal fungi (Lekberg et al. 2014,
2018; Thiery et al. 2016). Therefore, metabarcoding data
have to be interpreted with great care and multiple
alignment-based approaches should be employed to iden-
tify and resolve potential issues (see below).
The availability of well-documented reference data is

of particular importance to properly assess ITS variants
stemming from intragenomic variation. If ITS pseudo-
genes have been identified for a fungal lineage (e.g. Li
et al. 2017), their deposition and proper annotation will
assist automated pipelines to identify such cases. Alter-
natively, long-fragment reads, including flanking regions
of the small and/or large subunit (nuSSU, nuLSU), have
been proposed as a possible solution to assess intrage-
nomic ITS variation in metabarcoding approaches (Krü-
ger et al. 2012; Heeger et al. 2018; Tedersoo et al.
2018b). PacBio RS produces read lengths of 3000–6000
bases, which is not sufficient to resolve intragenomic
rDNA variation, as only single tandem repeats are cov-
ered, but PacBio RS II can achieve up to 60,000 bases
(Rhoads and Au 2015). Given that the average number
of ITS copies in the fungal genome is around 100 (Lofg-
ren et al. 2019), PacBio Sequel II is particularly promis-
ing, as it can achieve read lengths of up to 250,000
bases, matching those obtained with Oxford Nanopore
Technologies sequencing (Jain et al. 2016; Payne et al.
2019; De Coster et al. 2020; Stadler et al. 2020). While it
is unclear whether the necessary high-molecular weight
DNA can be obtained, since commonly used extraction
techniques require a mechanical disruption of fungal
cells, successful rDNA tandem repeat sequencing using
a combination of PacBio and Oxford Nanopore sequen-
cing has been performed in fungi (Wurzbacher et al.
2019). Long-fragment reads have the added advantage
that nuSSU and/or nuLSU flanking regions help to an-
chor the ITS within a more conserved backbone (Heeger
et al. 2018; Tedersoo et al. 2018b).
Another caveat of the ITS is interspecific and intrage-

nomic length heterogeneity. In some groups, such as as-
comycetous yeasts, the full length (ITS1, 5.8S and ITS2)
may vary from less than 400 (Yarrowia lipolytica) to
over 1000 bases (Schizosaccharomyces pombe; Esteve-
Zarzoso et al. 1999). In most fungi, the length of the ITS
is more uniform, but even minor variation may result in
regions with low alignment confidence. Environmental
metabarcoding approaches often target spacer regions
only, either ITS1 or ITS2, and so short but full-length
ITS reads may be unintentionally excluded from subse-
quent analysis by bioinformatic pipelines that by default
exclude reads less than 150–200 bp long (Majaneva et al.
2015; Sinha et al. 2017; Anslan et al. 2018). Strategies to
avoid this would be primer-based filtering or, as outlined
above, anchoring with nuSSU or nuLSU flanking regions
via long-fragment reads. While single-copy protein-
coding markers proposed as secondary DNA barcodes in
fungi do not exhibit the problems associated with mul-
tiple copies, phenomena such as paralogs may apply to
them as well, such as in COX1, RPB2, and TUB2 (Gil-
more et al. 2009; Zhao et al. 2014), and their accurate in-
terpretation likewise depends on proper data analysis
and completeness of reference databases.
Regardless of the marker, the quality of reference data

is of utmost importance, particularly in environmental
metabarcoding. While it may not work for all fungi at
the desired level of precision, ITS remains the first
choice for fungal identifications at a broad level. It is not
only easily amplified (with some exceptions; e.g. Kijpor-
nyongpan and Aime 2016), but it also is the most frequently
sequenced fungal marker both in specimen-based and meta-
barcoding approaches, making it unchallenged as a reference
compared to any other marker. Even if secondary barcode
markers are increasingly employed, they only represent a
small fraction of available sequence data compared to ITS.
GenBank currently has about 110,000 records for fungal
TEF1 and 67,000 for fungal RPB2, but over 1.3 million for
fungal ITS. The application of ITS is thus comparable to a
first diagnosis across all fungi. Depending on the results, sec-
ondary DNA barcodes may be required to obtain the desired
resolution. Unfortunately, in some common and diverse fun-
gal genera, such as Fusarium and Trichoderma, due to lack
of resolution, some taxonomists have stopped sequencing
the ITS. This practice is not recommended, as it excludes
these taxa from being detected in metabarcoding surveys.
Even if not necessarily providing enough resolution,
ITS should be sequenced for each fungal lineage in
addition to other markers, in order to provide a broad
reference database that offers a compromise between
coverage and precision. Metabarcoding studies would
then employ ITS as default marker and additionally one
or several secondary barcodes (e.g. Větrovský et al.
2016; Cobo-Díaz et al. 2019).

PAIRWISE SIMILARITY ASSESSMENTS:
LIMITATIONS AND SOLUTIONS
OTU clustering
The single major issue of DNA barcoding is the routine
application of pairwise similarity assessments, either
through BLAST searches or clustering algorithms such
as in USEARCH, VSEARCH or MultiLevel Clustering
(Edgar 2010, 2013; Vu et al. 2014; Rognes et al. 2016).
These approaches have become popular as they are eas-
ily integrated into automated pipelines and allow the
analysis of extremely large data sets in a short time and
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with little manual work involved (Majaneva et al. 2015;
Sinha et al. 2017; Anslan et al. 2018). In contrast to mul-
tiple alignment-based phylogenetic approaches, pairwise
similarity may wrongly assess positional variation and
hence not accurately reflect taxonomic entities or phylo-
genetic relationships. For instance, a position with a
varying indel comprising either [AG], [A] or [G], in a
multiple alignment will align all [A] with either [A] or a
gap, but not with [G], whereas pairwise alignment will
interpret a single [A] and [G] as a substitution. This
issue may appear minor but can cause dramatic effects
in OTU clustering, especially when such variation is
caused by sequencing errors (e.g. Lücking et al. 2014).
As a consequence, OTUs derived from clustering are
different in number and composition when compared to
actual phylogenetic entities (Porter and Golding 2011;
Powell et al. 2011; Lücking et al. 2014). Huse et al.
(2010) designed a two-step clustering approach that re-
duces the effect of OTU inflation in de-novo clustering.
Swarm (Mahé et al. 2014, 2015) reduces the issue of ran-
dom effects on cluster formation and inflation. Increased
accuracy while not compromising in computational
speed can also be achieved by hc-OTU clustering
through homopolymer compaction (Park et al. 2016).
Employing PaPaRa (Berger and Stamatakis 2012; Weg-
mann 2019) in read processing can substantially reduce
sequencing errors prior to OTU clustering: Lücking
et al. (2014) found that after automated removal of
homopolymer-based errors using PaPaRa, OTU cluster-
ing accuracy improved by 94%. Post-processing of clus-
ters to filter out potentially artifactual OTUs can be
performed with the LULU package (Frøslev et al. 2017).
Clustering approaches require predefined similarity

thresholds, but such fixed thresholds do not exist when
it comes to the delimitation of species. In phylogenetic
treatments based on ITS, sister species can differ in as
few as three bases (around 99.5% similarity; Garnica
et al. 2016; Lücking et al. 2017; Urbina and Aime 2018;
Vu et al. 2016, 2019). Indeed, in certain groups of fungi,
such as Hypocreales (Fusarium, Gibberella, Tricho-
derma), species hypotheses delimited at 98.5% in UNITE
include sequences from type material of several to nu-
merous different species (Robbertse et al. 2017). Varying
optimal thresholds have been determined for different
lineages based on two large barcode datasets (Vu et al.
2016, 2019). If the marker of choice lacks resolution,
then even the highest similarity threshold will not yield
reliable OTU estimates. Clustering approaches set the
threshold at either 97%, the default in most pipelines
(Majaneva et al. 2015; Sinha et al. 2017; Anslan et al.
2018), or at 98.5%, the default used in curated databases,
such as UNITE and ISHAM DNA barcoding for “species
hypotheses” based on ITS (Kõljalg et al. 2013, 2019; Irinyi
et al. 2015; Jeewon and Hyde 2016). This latter threshold
does reflect empirically derived estimates (e.g. Lücking
et al. 2020; and Fig. 3); the aforementioned analysis of
9000 yeast cultures showed that a threshold of 98.41%
similarity (towards the corresponding type strain) for the
ITS worked well for most species (Vu et al. 2016).
The potential underestimation of species richness

using fixed pairwise similarity thresholds is counterba-
lanced by the overestimation of taxonomic units through
OTU clustering bias. As a result, a proportion of OTUs
may not be real taxonomic entities, whereas a propor-
tion of real taxonomic entities may be missed. This situ-
ation is further complicated in lineages characterized by
high heterogeneity of ITS sequences (sometimes more
than 10%; Thiery et al. 2016; Sipiczki et al. 2018). Arbi-
trary variation of predefined thresholds, e.g. between 97
and 98.5%, will further affect the recovery of taxonomic
entities in clustering approaches (Lücking et al. 2014;
Garnica et al. 2016; Edgar 2018).

BLAST mapping
Similarity assessment through pairwise alignment also poses
limitations for BLAST-based identifications of individual
amplicon variant metabarcoding reads (Callahan et al. 2017),
such as implemented in BLAST+, the RDP Bayesian classi-
fier or MycoBank BioloMICS Sequences (Camacho et al.
2009; Robert et al. 2013; Deshpande et al. 2016). While
amplicon variant BLAST mapping avoids potential bias of
OTU clustering, it also relies on pairwise alignment scores,
particularly max score, query cover, e value and percentage
identity. Max score, the sum of match rewards and mis-
match and gap penalties, depends on query and reference se-
quence length: shorter matches with higher identity may
receive a lower score and not be immediately visible as best
hits. The e value, the number of expected hits of similar
score that could be found by chance, is computed from max
score and results in the same sorting of matches but depends
on query sequence length and reference database size and
hence is not comparable across databases. Both max score
and e value are also affected by the structure of reference se-
quences, such as partial ITS sequences that include long por-
tions of the conserved nuSSU or nuLSU or are dominated
by the 5.8S region. Algorithms that extract the diagnostic
ITS spacer regions, such as the FungalITSextractor (Nilsson
et al. 2010) and ITSx (Bengtsson-Palme et al. 2013), address
this issue: metabarcoding pipelines that contain FungalIT-
Sextractor (Bálint et al. 2014) or ITSx (Hildebrand et al.
2014; Gweon et al. 2015; Anslan et al. 2017) perform best in
relation to BLAST mapping (Anslan et al. 2018).
Percentage identity can be measured in three ways: (1)

Nmatches / Ntotal pairwise alignment length (BLAST identity), (1)
Nmatches / Ntotal pairwise alignment length minus indels (gap-excluded
identity), and (3) Nmatches / Ntotal pairwise alignment length minus

indel groups (gap-compressed identity). BLAST identity con-
siders individual indels as mismatches and hence results in
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lower similarity values than the other two approaches for a
given sequence pair. It is also more sensitive to
homopolymer-based sequencing errors in the query reads
and affected by improper trimming of low-quality ter-
minal portions of reference sequences (Nilsson et al.
2017). As a result, sequences retrieved as best hits in
BLAST searches are not necessarily most closely related
(e.g. Thiery et al. 2016; Lücking et al. 2020). The above is-
sues also depend on whether query and reference se-
quences represent the full ITS or only the ITS1 or ITS2
spacer regions (Nilsson et al. 2008; Blaalid et al. 2013;
Tedersoo et al. 2015; Garnica et al. 2016; Badotti et al.
2017; Větrovský et al. 2020).
Even so, BLAST is the most commonly employed read

mapping technique, either against a primary sequence
repository, such as GenBank or against curated or other-
wise specialized databases, such as UNITE. Notably, re-
ported problems can largely be solved by increasing the
quality and representativity of reference databases, in par-
ticular correct sequence labeling, and by adding a verifica-
tion step (Lücking et al. 2020). The latter is not possible for
metabarcoding studies, as BLAST results cannot be
inspected individually. However, automated verification can
be achieved through phylogeny-based analysis of metabar-
coding reads that compute statistical support values for al-
ternative placements. This can be achieved either through
local alignments of BLAST hits under a Bayesian frame-
work (Munch et al. 2008; Porter and Golding 2011), with a
probabilistic approach such as PROTAX Fungi (Abarenkov
et al. 2018), through a "random forest" learning tool (Meher
et al. 2019), or through read placement into a separately
established reference tree (Berger et al. 2011; Matsen et al.
2012; Barbera et al. 2019).

Multiple alignment-based read placement
Read placement into a reference tree is a promising ap-
proach that increases accuracy and precision in metabarcod-
ing studies compared to OTU clustering and BLAST-based
amplicon variant read mapping (Stark et al. 2010; Berger
et al. 2011; Matsen et al. 2012; Paul et al. 2018; Czech et al.
2018, 2019; Barbera et al. 2019; Carbone et al. 2019). The
method, also dubbed phylogenetic binning, relies on three
components: (1) a reference tree for a set of taxa which can
be derived through phylogenetic analysis of existing data; (2)
a fixed alignment of reference sequences corresponding to
the metabarcoding marker (e.g. ITS) for the taxa included in
the reference tree; (3) a set of query reads from a metabar-
coding study corresponding to the same barcoding marker.
In a first step, the query reads are automatically aligned to
the fixed reference alignment (Berger et al. 2011), using for
instance PaPaRa (Berger and Stamatakis 2012) and the
[−-add] function in MAFFT (Katoh and Frith 2012). In a sec-
ond step, each query sequence is individually placed into the
reference tree based on its alignment by invoking the
Evolutionary Placement Algorithm (EPA; Stamatakis et al.
2010; Berger et al. 2011; Barbera et al. 2019). In addition to a
maximum likelihood or maximum parsimony approach of-
fered by the EPA, read placement can also be performed in a
Bayesian framework using pplacer (Matsen et al. 2010). Mir-
arab et al. (2012) proposed SATé-enabled phylogenetic
placement (SEPP) to improve alignment accuracy through
simultaneous alignment and tree building.
Phylogenetic binning placed each query sequence at

the most closely matching node under an evolutionary
model: if the query sequence matches a terminal, it will
cluster with that terminal; alternatively, it attaches to an
internal node representing a higher taxonomic level, an
approach that conceptually corresponds to the LCA.
While the Bayesian framework in pplacer offers direct
assessment of statistical confidence, the EPA allows the
computing of bootstrap support values for potential al-
ternative read placements. These options provide an au-
tomated, quantitative verification step not available
through OTU clustering or BLAST mapping, except with
approaches such as PROTAX Fungi and “random for-
est” learning (Abarenkov et al. 2018; Meher et al.
2019). Optionally, prior to invoking the EPA, the
phylogenetic pattern of the metabarcoding marker
over the fixed reference alignment can be analyzed
using a maximum parsimony or maximum likelihood
approach in order to compute a weight vector. In
doing so, potential homoplasy through saturation in highly
variable regions of the metabarcoding marker can be
assessed to improve the subsequent placement of query se-
quences into the reference tree. Therefore, the reference tree
should be inferred based on markers that do not include the
metabarcoding marker, to avoid circular conclusions.
Apart from bootstrapping and Bayesian posterior

probabilities offering automated verification, phylogen-
etic binning has further, important advantages over
OTU clustering and BLAST mapping. Point variation in
query reads, whether representing sequencing errors or
real variation, does not prevent their accurate placement
into a reference tree (Berger et al. 2011; Lücking et al.
2014). The absence of close relatives in a reference tree
is immediately discernible by placement of a query read
at a deeper node, a more accurate approach than LCA,
as it avoids the ambiguity of low similarity values in the
latter. Read placement also allows the implementation of
quantitative species delimitation methods to automatic-
ally assess taxonomic diversity, an approach already inte-
grated into the phylogenetic binning approach (Zhang
et al. 2013). Broad reference trees can be assembled and
centrally maintained to be used in analytical pipelines
(Tedersoo et al. 2018a; Carbone et al. 2019), or alterna-
tively computed automatically from published sequences
(Czech et al. 2019), allowing dynamic on-the-fly solu-
tions for particular situations.



Lücking et al. IMA Fungus           (2020) 11:14 Page 19 of 32
Given the large amount of data to be analyzed,
often encompassing hundreds of thousands of reads,
environmental metabarcoding of fungi requires a
trade-off between speed on one hand and accuracy
and precision on the other (see below). Up to the re-
cent past, OTU clustering was the only viable ap-
proach to achieve this goal. However, phylogenetic
binning is now possible through massive parallel com-
puting on large clusters (Barbera et al. 2019; Carbone
et al. 2019) and may become the method of choice
for metabarcoding studies. Even when OTU clustering
and/or BLAST mapping are preferred, certain strat-
egies can help to improve results, including PaPaRa
read processing to remove specific sequencing errors,
algorithms such as FungalITSextractor and ITSx to
increase diagnostic power, taxon-specific dynamic
pairwise similarity thresholds, the analysis of a given
sample with both the ITS and secondary barcodes,
and locally aligning and analysing BLAST hits using
automated phylogenetic approaches.

CONCLUSIONS AND RECOMMENDATIONS
As is true for other organisms, fungal species are not
only defined horizontally through phylogenetic and
phenotypic coherence, but also vertically through time
of origin and subsequent diversification. Individually dif-
ferent evolutionary histories thus make it impossible to
apply universal and unambiguous criteria for the delimi-
tation, recognition, and identification of fungi. Best prac-
tice depends on each group, and residual ambiguity
remains in many cases, also due to incompleteness of
identification tools and reference data. The desire for
rapid, automated approaches, such as OTU clustering
and pairwise similarity-based BLAST mapping amplifies
these problems.
Full exploration of the various conceptual approaches to

delimit fungal species, including reproductive biology, is
currently only feasible for selected taxa including model
organisms. Since generalizations from model studies are
limited to close relatives or ecologically equivalent taxa,
this approach should be expanded to cover selected spe-
cies in all groups of fungi, representing the diversity of
phenotypes, lineages, and nutritional strategies. For
broadly cataloguing fungal diversity, an integrative (poly-
phasic) taxonomic approach seems most effective, ad-
justed to the group under study and combining molecular
and phenotype data. In many groups, single-marker DNA
barcoding may suffice, whereas more complex taxa re-
quire a combination of primary and secondary barcoding
markers or multi-marker approaches. Phylogenomics may
be employed to resolve particularly difficult species com-
plexes, but this approach demands large computational
and personal resources and is currently limited to exem-
plar case studies.
The phenotype remains an integrative component of
fungal taxonomy, encompassing also data derived from
cultures and other sources. Taxonomists will continue
to describe new species in the absence of molecular data,
in groups where this approach is justified. However,
phenotypic data should be thoroughly analyzed before
establishing new species by any method. If the material
would allow the generation of molecular data but the
methodology to do so is not available, then collaboration
to produce such data is recommended. In general, the
goal remains to document all fungi with molecular data.
Phenotypic data are of particular importance when
assessing the status of phylogenetically distinct clades
through integrative taxonomy. In such cases, quantita-
tive analysis of structured phenotype matrices should be
implemented to assess phenotypic variation in a phylo-
genetic context, which will then also allow the detection
of reliable diagnostic characters.
On a molecular level, ITS remains the universal fungal

barcode marker to initially identify phylogenetic lineages.
It can thus be considered a first diagnosis. Where ITS
does not suffice to discriminate between species, second-
ary barcoding markers or multi-locus approaches need
to be employed to achieve the desired level of precision
and accuracy. How individual markers resolve species is
determined by context, and feasibility of particular
markers should not be uncritically transferred from one
taxonomic group to another but instead empirically ex-
plored for each taxon. ITS will likely remain the marker
of choice for fungal metabarcoding studies, although
long-read approaches or the addition of secondary bar-
coding markers will improve accuracy and precision.
However, metabarcoding approaches should move away
from OTU clustering and BLAST mapping exercises and
instead implement phylogenetic methods, such as read
placement (phylogenetic binning).
Current issues arising with DNA barcoding of

fungi are not primarily due to conceptual limitations
of the approach but due to shortcomings of refer-
ence databases, including incompleteness in terms of
taxonomic coverage, lack of properly documented
genetic diversity, and inaccuracy of sequence labels.
Major efforts must therefore be directed at further
improving these resources, particularly the continued
and critical revision of existing data to achieve high
quality labels.
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